Вопрос задан 02.05.2019 в 06:34. Предмет Математика. Спрашивает Кривокульський Олег.

Как найти корень уравнения x|x|=3x

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Калинин Максим.
x|x|=3x
модуль раскладываем,как 2 случая
1 случай:
x*x=3x
x^2-3x=0
x(x-3)=0
x=0 и x=3
2 случай:
-x^2-3x=0
-x(x+3)=0
x=0 и x=-3
Ответ:-3;0;3
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Решение уравнения x*|x| = 3x

Для нахождения корней уравнения x*|x| = 3x, мы можем разбить его на несколько случаев в зависимости от знака x.

1. При x > 0: - Уравнение принимает вид x^2 = 3x. - Переносим все члены уравнения в одну сторону: x^2 - 3x = 0. - Факторизуем: x(x - 3) = 0. - Получаем два корня: x = 0 и x = 3.

2. При x < 0: - Уравнение принимает вид -x^2 = 3x. - Переносим все члены уравнения в одну сторону: x^2 + 3x = 0. - Факторизуем: x(x + 3) = 0. - Получаем два корня: x = 0 и x = -3.

3. При x = 0: - Подставим x = 0 в исходное уравнение: 0*|0| = 3*0, что верно.

Таким образом, уравнение x*|x| = 3x имеет три корня: x = 0, x = 3 и x = -3.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос