
Образующая конуса равна 10 см и образует с высотой угол 30. Найдите площадь его осевого сечения?


Ответы на вопрос

R основания =10*(1/2)=5 (sin30=1/2) --> D =10
H= 10*cos30=10 *√3 /2=5*√3
S=(10*5*√3)/2 = 25*√3 <--- ответ



Для того чтобы найти площадь осевого сечения конуса, мы можем воспользоваться формулой:
S = π * r^2
где S - площадь осевого сечения, π - число пи (приблизительно 3,14), r - радиус основания конуса.
Для начала нам нужно найти радиус основания конуса. Для этого мы можем воспользоваться формулой:
r = d / 2
где d - диаметр основания конуса.
Так как у нас дан угол между образующей конуса и его высотой, мы можем воспользоваться тригонометрическими функциями для нахождения радиуса основания:
r = h * tan(α)
где h - высота конуса, α - угол между образующей и высотой.
Подставим значения в формулу:
r = 10 * tan(30°) r = 10 * 0,577 r ≈ 5,77 см
Теперь мы можем найти площадь осевого сечения:
S = π * (5,77)^2 S ≈ 3,14 * 33,3329 S ≈ 104,67 см^2
Таким образом, площадь осевого сечения конуса равна примерно 104,67 квадратных сантиметров.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili