Вопрос задан 01.05.2019 в 08:47. Предмет Математика. Спрашивает Савельев Максим.

Сделать чертеж и решить задачу. Самолет вылетел из Санкт-Петербурга во Владивосток первые 4 ч он

летел со скоростью 700 км/ч. А остальное время он летел со скоростью 500 км/ч. Сколько всего часов летел самолет, если расстояние между городами 5300 км ?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Шнек Стас.
Это точный ответ
Ответ: 9 часов.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Statement

A plane flew from St. Petersburg to Vladivostok. It flew at a speed of 700 km/h for the first 4 hours and then at a speed of 500 km/h for the remaining time. The distance between the cities is 5300 km. We need to find out how many hours the plane flew in total.

Solution

To solve this problem, we can use the formula:

Distance = Speed × Time

Let's denote the time the plane flew at a speed of 700 km/h as t1 and the time it flew at a speed of 500 km/h as t2.

We know that the total distance between St. Petersburg and Vladivostok is 5300 km. Therefore, we can write the equation:

700 × t1 + 500 × t2 = 5300

We also know that the plane flew for a total of t1 + t2 hours. Therefore, we can write another equation:

t1 + t2 = total flying time

Now we have a system of two equations with two unknowns. We can solve this system to find the values of t1 and t2.

Let's solve the system of equations:

700 × t1 + 500 × t2 = 5300 (Equation 1)

t1 + t2 = total flying time (Equation 2)

To solve Equation 2 for t1, we can rewrite it as:

t1 = total flying time - t2

Substituting this value of t1 into Equation 1, we get:

700 × (total flying time - t2) + 500 × t2 = 5300

Simplifying the equation:

700 × total flying time - 700 × t2 + 500 × t2 = 5300

Combining like terms:

200 × t2 = 5300 - 700 × total flying time

Dividing both sides by 200:

t2 = (5300 - 700 × total flying time) / 200

Now we have the value of t2 in terms of the total flying time. We can substitute this value back into Equation 2 to find t1:

t1 = total flying time - t2

Substituting the value of t2:

t1 = total flying time - (5300 - 700 × total flying time) / 200

Simplifying the equation:

t1 = (200 × total flying time - 5300 + 700 × total flying time) / 200

Combining like terms:

t1 = (900 × total flying time - 5300) / 200

Now we have expressions for t1 and t2 in terms of the total flying time. We can substitute these values back into Equation 2 to find the total flying time:

total flying time = t1 + t2

Substituting the values of t1 and t2:

total flying time = (900 × total flying time - 5300) / 200 + (5300 - 700 × total flying time) / 200

Simplifying the equation:

total flying time = (900 × total flying time - 5300 + 5300 - 700 × total flying time) / 200

Combining like terms:

total flying time = (200 × total flying time) / 200

Simplifying further:

total flying time = total flying time

This equation tells us that the total flying time is equal to the total flying time. This means that the total flying time can be any value.

Therefore, the total flying time of the plane cannot be determined based on the given information.

Please note that the given information does not provide enough details to determine the total flying time of the plane.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос