
розв`яжіть рівняння| |x| - 4| = 5


Ответы на вопрос

|x|=9
x1=9
x2=-9



I can help you solve this equation. The equation is |x| - 4 = 5, which means the absolute value of x minus 4 equals 5. To solve this equation, we need to consider two cases: x - 4 = 5 and x - 4 = -5.
For the first case, x - 4 = 5, we can add 4 to both sides and get x = 9. This is one solution of the equation.
For the second case, x - 4 = -5, we can add 4 to both sides and get x = -1. This is another solution of the equation.
Therefore, the equation has two solutions: x = 9 or x = -1. You can check these solutions by plugging them into the original equation and see if they satisfy it.
If you want to learn more about solving equations with absolute values, you can visit [this website](https://mathdf.com/equ/uk/) or [this website](https://ua.onlinemschool.com/math/assistance/equation/quadratic/). They have detailed explanations and examples of how to solve different types of equations with absolute values. I hope this helps you. Have a nice day.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili