Вопрос задан 30.04.2019 в 10:33. Предмет Математика. Спрашивает Сундырев Валера.

Ребята получили на новогодней ёлке одинаковые подарки. Во всех подарках вместе было 123 апельсина и

82 яблока. Сколько ребят присутствовало на ёлке? сколько апельсинов и сколько яблок было в каждом подарке?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Рысухин Максим.
На елке присутствовал 41 человек. В каждом подарке было по 2 яблока (41•2=82 яблока) и по 3 апельсина (41•3=123 апельсина) Чтоб понять сколько было человек,я разделил 82:2=41 (82 яблока поделил допустим на 2,т.е по 2шт в каждом подарке)
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given that a group of children received the same number of gifts at a New Year's tree. In all the gifts combined, there were 123 oranges and 82 apples. We need to determine the number of children present at the tree and the number of oranges and apples in each gift.

Solution

Let's assume there were x children present at the tree. Since each child received the same number of gifts, we can say that the number of oranges and apples in each gift is the same.

From the given information, we know that in all the gifts combined, there were 123 oranges and 82 apples. Therefore, the total number of gifts can be calculated by finding the greatest common divisor (GCD) of 123 and 82.

To find the GCD, we can use the Euclidean algorithm. The GCD of two numbers can be found by repeatedly subtracting the smaller number from the larger number until one of them becomes zero. The remaining non-zero number is the GCD.

Let's calculate the GCD of 123 and 82:

``` 123 = 1 * 82 + 41 82 = 2 * 41 + 0 ```

Since the remainder is zero, the GCD of 123 and 82 is 41.

Therefore, there were 41 gifts in total.

Now, let's calculate the number of children present at the tree. Since each child received the same number of gifts, the number of children can be found by dividing the total number of gifts by the number of gifts received by each child.

``` Number of children = Total number of gifts / Number of gifts per child = 41 / Number of gifts per child ```

To find the number of gifts per child, we need to find the GCD of 123 and 82.

``` 123 = 1 * 82 + 41 82 = 2 * 41 + 0 ```

The GCD of 123 and 82 is 41.

Therefore, the number of children present at the tree is 41.

Now, let's calculate the number of oranges and apples in each gift. Since the total number of oranges and apples is divided equally among the gifts, we can divide the total number of oranges and apples by the number of gifts.

``` Number of oranges per gift = Total number of oranges / Number of gifts = 123 / Number of gifts ```

``` Number of apples per gift = Total number of apples / Number of gifts = 82 / Number of gifts ```

Let's calculate the number of oranges and apples in each gift:

``` Number of oranges per gift = 123 / 41 = 3 Number of apples per gift = 82 / 41 = 2 ```

Therefore, there were 41 children present at the tree, and each gift contained 3 oranges and 2 apples.

Answer

There were 41 children present at the New Year's tree. Each gift contained 3 oranges and 2 apples.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос