
Как решить lim корень из 2-x-корень из 2плюс x разделить на x в квадрате плюс 2x


Ответы на вопрос




Solving the Limit
To solve the limit of the given expression, we can use the following steps:
1. Identify the Limit Expression: The given expression is $\lim_{{x \to \infty}} \frac{\sqrt{2-x\sqrt{2}+x}}{x^2+2x}$.
2. Simplify the Expression: We can simplify the expression by rationalizing the numerator and factoring the denominator.
3. Apply the Limit: After simplifying the expression, we can then apply the limit as $x$ approaches infinity to find the solution.
Let's proceed with these steps.
Simplification and Solution
First, let's simplify the given expression:
The given expression is $\lim_{{x \to \infty}} \frac{\sqrt{2-x\sqrt{2}+x}}{x^2+2x}$.
We can rationalize the numerator by multiplying both the numerator and the denominator by the conjugate of the numerator, which is $\sqrt{2-x\sqrt{2}+x} + \sqrt{2}$.
This gives us: $\lim_{{x \to \infty}} \frac{\sqrt{2-x\sqrt{2}+x} \cdot (\sqrt{2-x\sqrt{2}+x} + \sqrt{2})}{(x^2+2x) \cdot (\sqrt{2-x\sqrt{2}+x} + \sqrt{2})}$.
After simplifying, we get: $\lim_{{x \to \infty}} \frac{2-x\sqrt{2}+x+2\sqrt{2}}{x^2\sqrt{2}+2x\sqrt{2}+x\sqrt{2}+2x^2+4x}$.
Now, we can apply the limit as $x$ approaches infinity to find the solution.
Let's calculate the limit and provide the final solution.
Final Solution
After applying the limit as $x$ approaches infinity, the solution to the given limit expression is:
$\lim_{{x \to \infty}} \frac{\sqrt{2-x\sqrt{2}+x}}{x^2+2x} = 0$.
This means that as $x$ approaches infinity, the value of the given expression approaches 0.
I hope this helps! If you have any further questions or need additional assistance, feel free to ask.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili