Вопрос задан 28.04.2019 в 14:24. Предмет Математика. Спрашивает Литвиненко Миша.

Две черепахи одновременно поползли навстречу друг другу,когда между ними было 225 м.Скорость одной

9 м/мин,другой 6 м/мин.Через сколько времени между черепахами будет 120 м?Через сколько времени они встретятся?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Катарова Диана.
1) (225-120):(9+6)=7(мин)-между ними будет 120 м
2) 225:(9+6)=15(мин)-они встретятся
0 0
Отвечает Изотов Егор.
1.9+6=15(м/мин) скорость сближения черепах.
2.120:15=8(мин) время,через которое между черепахами будет расстояние 120 м.
3.225:15=15(мин)-время,через которое они встретятся
Ответ:8 мин,15 мин.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We have two turtles crawling towards each other. The distance between them is 225 meters. The first turtle crawls at a speed of 9 m/min, and the second turtle crawls at a speed of 6 m/min. We need to find out how much time it will take for the turtles to meet and how much time it will take for the distance between them to be 120 meters.

Solution

Let's calculate the time it will take for the turtles to meet and the time it will take for the distance between them to be 120 meters.

Let's assume that the first turtle starts at point A and the second turtle starts at point B. The distance between A and B is 225 meters.

To find the time it will take for the turtles to meet, we can use the formula:

Time = Distance / Speed

For the first turtle, the distance it needs to cover is (225 - 120) = 105 meters, and its speed is 9 m/min. Therefore, the time it will take for the first turtle to cover this distance is:

Time for the first turtle = 105 meters / 9 m/min

For the second turtle, the distance it needs to cover is (225 - 120) = 105 meters, and its speed is 6 m/min. Therefore, the time it will take for the second turtle to cover this distance is:

Time for the second turtle = 105 meters / 6 m/min

Now, let's calculate the total time it will take for the turtles to meet:

Total time = Time for the first turtle + Time for the second turtle

Let's calculate the values:

Time for the first turtle = 105 meters / 9 m/min = 11.67 min

Time for the second turtle = 105 meters / 6 m/min = 17.5 min

Total time = 11.67 min + 17.5 min = 29.17 min

Therefore, it will take approximately 29.17 minutes for the turtles to meet.

To find the time it will take for the distance between the turtles to be 120 meters, we can use the same formula:

Time = Distance / Speed

For the first turtle, the distance it needs to cover is 120 meters, and its speed is 9 m/min. Therefore, the time it will take for the first turtle to cover this distance is:

Time for the first turtle = 120 meters / 9 m/min

For the second turtle, the distance it needs to cover is 120 meters, and its speed is 6 m/min. Therefore, the time it will take for the second turtle to cover this distance is:

Time for the second turtle = 120 meters / 6 m/min

Now, let's calculate the total time it will take for the distance between the turtles to be 120 meters:

Total time = Time for the first turtle + Time for the second turtle

Let's calculate the values:

Time for the first turtle = 120 meters / 9 m/min = 13.33 min

Time for the second turtle = 120 meters / 6 m/min = 20 min

Total time = 13.33 min + 20 min = 33.33 min

Therefore, it will take approximately 33.33 minutes for the distance between the turtles to be 120 meters.

Answer

It will take approximately 29.17 minutes for the turtles to meet, and it will take approximately 33.33 minutes for the distance between the turtles to be 120 meters.

Please let me know if I can help you with anything else.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос