Вопрос задан 27.04.2019 в 01:08. Предмет Математика. Спрашивает Жукова Лиза.

1. Выполните действие 2целых 2/9 *(4целых - 1 целая 4/15) 2. Упростите выражения а) а-4/9а+1/9а

б) в+ 1/4 в - 5/6 в Заранее спасибо !
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Стаева Ирка.
1. Выполните действие 
2 2/9 *(4 - 1  4/15)=
2 2/9 *(3-  4/15)=2 2/9 *2 11/15=20/9*41/15=4/9*41/3=164/27=
=6 2/27
2. Упростите выражения 
а) а-4/9а+1/9а=а-3/9а=а-1/3а=2/3а
б) в+ 1/4 в - 5/6 в=в+3/12в-10/12в=в-7/12в=5/12в
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

1. Выполнение действия: 2 целых + 2/9 * (4 целых - 1 целая 4/15) + 2

Для выполнения этого действия, мы начнем с упрощения выражения в круглых скобках. Вычитание 1 целой 4/15 из 4 целых можно выполнить, приведя оба числа к общему знаменателю. Знаменатель 15 можно привести к знаменателю 9, умножив его на 3/3. Получаем 4 целых - 1 целая 12/45.

Теперь выражение выглядит следующим образом: 2 целых + 2/9 * (4 целых - 1 целая 12/45) + 2

Далее, упростим умножение 2/9 на скобку. Умножение двух дробей выполняется умножением числителей и знаменателей. Получаем (2 * (4 целых - 1 целая 12/45)) / 9.

Продолжим упрощение внутри скобок, вычитая 1 целую 12/45 из 4 целых. Снова приведем дробь к общему знаменателю 45, умножив ее на 9/9. Получаем (2 * (4 целых * 45/45 - 1 целая 12/45)) / 9.

Результатом этого упрощения будет (2 * (180/45 - 12/45)) / 9.

Выполним вычитание внутри скобок: (2 * (168/45)) / 9.

Умножим 2 на 168/45: (336/45) / 9.

Для деления двух дробей мы умножаем первую дробь на обратную второй дроби. Получаем (336/45) * (1/9).

Умножение двух дробей выполняется умножением числителей и знаменателей: 336 * 1 / 45 * 9.

Теперь у нас есть (336/45) * (1/9) = 336/405.

Для упрощения этой дроби найдем их общий делитель. Общий делитель чисел 336 и 405 равен 9. Поделим числитель и знаменатель на 9: 336/9 / 405/9 = 37/45.

Теперь добавим результат обратно к исходному выражению: 2 целых + 37/45 + 2.

Поскольку мы не знаем значения целых чисел, мы не можем сложить их с дробью. Поэтому оставляем выражение в таком виде: 2 целых + 37/45 + 2.

2. Упрощение выражений: а) а - 4/9 а + 1/9 а

Для упрощения этого выражения, мы можем объединить все слагаемые, которые имеют общий множитель а. Получим: а - 4/9 а + 1/9 а = (1 - 4/9 + 1/9) а.

Далее, выполним вычитание и сложение числителей: (9/9 - 4/9 + 1/9) а = (6/9) а.

Упрощение дроби 6/9: числитель и знаменатель можно разделить на их общий делитель 3. Получим (2/3) а.

Таким образом, упрощенное выражение равно (2/3) а.

б) в + 1/4 в - 5/6 в

Для упрощения этого выражения, мы можем объединить все слагаемые, которые имеют общий множитель в. Получим: в + 1/4 в - 5/6 в = (1 + 1/4 - 5/6) в.

Далее, выполним сложение числителей: (4/4 + 1/4 - 5/6) в = (10/4 - 5/6) в.

Чтобы сложить дроби с разными знаменателями, необходимо привести их к общему знаменателю. Общим знаменателем для 4 и 6 является 12. Приведем дроби к знаменателю 12: (30/12 - 10/12) в.

Выполним вычитание числителей: (30 - 10) / 12 в = 20/12 в.

Упрощение дроби 20/12: числитель и знаменатель можно разделить на их общий делитель 4. Получим (5/3) в.

Таким образом, упрощенное выражение равно (5/3) в.

Надеюсь, это поможет! Если у вас возникнут еще вопросы, пожалуйста, дайте мне знать.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос