
Вопрос задан 24.03.2019 в 02:55.
Предмет Математика.
Спрашивает Братов Аким.
Как доказать, что минус на минус дает плюс? не говорите, что аксиома


Ответы на вопрос

Отвечает Федів Антон.
Можно воспользоваться поговоркой враг моего врага мой друг. отрицание отрицательного дает положительное.
нам так объясняли, без аксиомы
нам так объясняли, без аксиомы



Отвечает Есмаханбет Ельнур.
Для начала докажем, что -a = (-1)a. Итак, a + (-1)a = 1a + (-1)a = (1 + (-1))a по аксиомам о существовании нейтрального элемента и о дистрибутивности умножения. Далее (1 + (-1))a = 0a по аксиоме о противоположном элементе. Покажем, что 0a = 0.
0a + a = 0a + 1a = (0+1)a = 1a = a. По аксиоме о существовании нейтрального элемента по сложению, получаем 0a + a = a = 0 + a, откуда 0a = 0. Возвращаясь назад, мы получили, что a + (-a) = 0 = 0a = a + (-1)a. То есть, действительно, -a = (-1)a.
Далее в рамках аксиоматики делаем следующие преобразования: (-a)(-b) = (-1)a(-1)b = (-1)(-1)ab= -(-1)ab (в последнем равенстве мы заменили (-1)(-1) на -(-1), т.к. ранее мы доказали, что -a = (-1)a).
Покажем, что -(-a) = a. Из аксиомы о противоположном элементе -(-a) - это такой элемент x, что (-a) + x = 0. Из той же аксиомы получаем, что a + (-a) = (-a) + a = 0, значит, этот элемент равен a. Отсюда -(-1) = 1. Значит, -(-1)ab = 1ab = ab по аксиоме о существовании нейтрального элемента по умножению. Окончательно, (-a)(-b) = ab. Что и требовалось доказать.
0a + a = 0a + 1a = (0+1)a = 1a = a. По аксиоме о существовании нейтрального элемента по сложению, получаем 0a + a = a = 0 + a, откуда 0a = 0. Возвращаясь назад, мы получили, что a + (-a) = 0 = 0a = a + (-1)a. То есть, действительно, -a = (-1)a.
Далее в рамках аксиоматики делаем следующие преобразования: (-a)(-b) = (-1)a(-1)b = (-1)(-1)ab= -(-1)ab (в последнем равенстве мы заменили (-1)(-1) на -(-1), т.к. ранее мы доказали, что -a = (-1)a).
Покажем, что -(-a) = a. Из аксиомы о противоположном элементе -(-a) - это такой элемент x, что (-a) + x = 0. Из той же аксиомы получаем, что a + (-a) = (-a) + a = 0, значит, этот элемент равен a. Отсюда -(-1) = 1. Значит, -(-1)ab = 1ab = ab по аксиоме о существовании нейтрального элемента по умножению. Окончательно, (-a)(-b) = ab. Что и требовалось доказать.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili