Вопрос задан 02.05.2018 в 19:55. Предмет Математика. Спрашивает Кот Диана.

Высота конуса равна 8, а длина образующей - 10. определите радиус вписанного шара

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Сарыг-Оол Саглай.

Находим радиус R основания конуса.
R = √(10²-8²) = √(100-64) = √36 = 6.
В осевом сечении имеем равнобедренный треугольник с боковыми сторонами по 10, в основании - диаметр окружности, равный 2R = 2*6 = 12.
Радиус r вписанного шара равен радиусу r вписанной окружности в треугольник осевого сечения.
r = √(((p-a)(p-b)(p-c))/p) = √(((16-10)(16-12)(16-10))/16) =
  = √(6*4*6/16) = 12/4 = 3.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос