
Вопрос задан 05.03.2019 в 21:19.
Предмет Математика.
Спрашивает Курьянова Софья.
На какое натурально число надо разделить число 540, чтобы остаток составлял 75% частного?


Ответы на вопрос

Отвечает Шокина Софья.
Остаток составляет 75% частного.
Пусть частное равно x, тогда остаток равен 3x/4.
Так как остаток - число целое, то x кратно 4, а остаток кратен 3.
Неизвестное число, на которое мы делим, обозначим a.
540 = ax + 3x/4
2160 = 4ax + 3x = x(4a+3)
При этом 3x/4 < a и 4а+3>=7
2160 = 2^4*3^3*5.
Делители числа, для которых выполняются оба условия:
2160=4*540=8*270=12*180=16*135=20*108=24*90=36*60=
=40*54=48*45=60*36=72*30=108*20=180*12
Проверяем условие 3x/4x=4; 4a+3=540 - нет, а не целое. Подбором находим:
x=16; 4а+3=135; а=33 - Это Решение.
Итак, х=16; 3х/4=12; а=33.
540=16*33+12
Это число 33; частное 16; остаток 12.
Пусть частное равно x, тогда остаток равен 3x/4.
Так как остаток - число целое, то x кратно 4, а остаток кратен 3.
Неизвестное число, на которое мы делим, обозначим a.
540 = ax + 3x/4
2160 = 4ax + 3x = x(4a+3)
При этом 3x/4 < a и 4а+3>=7
2160 = 2^4*3^3*5.
Делители числа, для которых выполняются оба условия:
2160=4*540=8*270=12*180=16*135=20*108=24*90=36*60=
=40*54=48*45=60*36=72*30=108*20=180*12
Проверяем условие 3x/4x=4; 4a+3=540 - нет, а не целое. Подбором находим:
x=16; 4а+3=135; а=33 - Это Решение.
Итак, х=16; 3х/4=12; а=33.
540=16*33+12
Это число 33; частное 16; остаток 12.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili