
Решите методом интервала (X²-16)(9+X²)>0


Ответы на вопрос




Для решения неравенства \((X^2 - 16)(9 + X^2) > 0\), мы можем использовать метод интервалов. Для начала, найдем корни уравнения \( (X^2 - 16)(9 + X^2) = 0 \). Эти точки делят вещественную прямую на интервалы, на которых неравенство может иметь различные значения.
1. Найдем корни уравнения \( (X^2 - 16)(9 + X^2) = 0 \): \[ (X^2 - 16)(9 + X^2) = 0 \] Решим каждый множитель равенства отдельно: \[ X^2 - 16 = 0 \quad \text{и} \quad 9 + X^2 = 0 \]
Для \(X^2 - 16 = 0\) получаем два корня: \[ X = -4 \quad \text{и} \quad X = 4 \]
Для \(9 + X^2 = 0\) получаем два мнимых корня, которые нас здесь не интересуют.
2. Теперь рассмотрим интервалы, образованные корнями:
Интервал I: \((- \infty, -4)\) Интервал II: \((-4, 4)\) Интервал III: \((4, +\infty)\)
3. Выберем по одной точке из каждого интервала и подставим в исходное неравенство, чтобы определить знак выражения \((X^2 - 16)(9 + X^2)\) на каждом интервале.
- Для интервала I (возьмем точку \(X = -5\)): \[ ((-5)^2 - 16)(9 + (-5)^2) = (25 - 16)(9 + 25) = (9)(34) > 0 \]
- Для интервала II (возьмем точку \(X = 0\)): \[ ((0)^2 - 16)(9 + (0)^2) = (-16)(9) < 0 \]
- Для интервала III (возьмем точку \(X = 5\)): \[ ((5)^2 - 16)(9 + (5)^2) = (9)(34) > 0 \]
4. Итак, мы определили знак выражения на каждом интервале:
- На интервале I: \( > 0\) - На интервале II: \( < 0\) - На интервале III: \( > 0\)
5. Теперь объединим интервалы, где выражение положительно:
\((-\infty, -4) \cup (4, +\infty)\)
Таким образом, решением неравенства \((X^2 - 16)(9 + X^2) > 0\) является объединение интервалов \((- \infty, -4)\) и \((4, +\infty)\).


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili