
В прямоугольном треугольнике АВС, угол В=90 градусов, АВ=8 см, АС=16 см. Найдите углы, которые
образует высота ВН с катетами треугольника. ПОЖАЛУЙСТА ПОМОГИТЕ! НО МНЕ НУЖНО С ПОЛНЫМ РЕШЕНИЕМ И РИСУНКОМ, А ТАКЖЕ Я ДАЮ 30 баллов! И ОТМЕЧУ КАК ЛУЧШИЙ!

Ответы на вопрос




Problem Analysis
We are given a right triangle ABC, where angle B is 90 degrees, AB is 8 cm, and AC is 16 cm. We need to find the angles formed by the altitude BH with the legs of the triangle.Solution
To solve this problem, we can use the properties of right triangles and trigonometry.Let's start by finding the length of the altitude BH. In a right triangle, the altitude from the right angle to the hypotenuse divides the triangle into two similar triangles. Therefore, we can use the following proportion:
BH/AB = AC/BC
Substituting the given values, we have:
BH/8 = 16/BC
Cross-multiplying, we get:
BH * BC = 8 * 16
Simplifying, we have:
BH * BC = 128
Now, let's find the angles formed by the altitude BH with the legs of the triangle. We can use trigonometric ratios to find these angles.
Let angle A be the angle formed by BH with leg AC, and angle C be the angle formed by BH with leg BC.
Using the sine ratio, we have:
sin(A) = BH/AC
Substituting the given values, we have:
sin(A) = BH/16
Rearranging the equation, we get:
BH = 16 * sin(A)
Similarly, using the sine ratio for angle C, we have:
sin(C) = BH/BC
Substituting the given values, we have:
sin(C) = BH/BC
Rearranging the equation, we get:
BH = BC * sin(C)
Since BH is the same in both equations, we can equate the two expressions for BH:
16 * sin(A) = BC * sin(C)
Now, we can solve this equation to find the values of angles A and C.
Let's calculate the values using the given information.
Calculation
Using the given information: - AB = 8 cm - AC = 16 cmWe can calculate the values of angles A and C.
Using the equation BH * BC = 128, we can find the value of BC:
BH * BC = 128
Substituting the value of BH from the equation BH = 16 * sin(A), we have:
16 * sin(A) * BC = 128
Simplifying, we get:
sin(A) * BC = 8
Now, using the equation sin(C) = BH/BC, we can find the value of sin(C):
sin(C) = BH/BC
Substituting the value of BH from the equation BH = BC * sin(C), we have:
sin(C) = BC * sin(C)/BC
Simplifying, we get:
sin(C) = sin(C)
Since sin(C) = sin(C), we can conclude that angle C is equal to angle C.
Now, let's solve the equation sin(A) * BC = 8 to find the value of BC.
Using the given information: - AB = 8 cm - AC = 16 cm
We can substitute the values into the equation:
sin(A) * BC = 8
Substituting the value of sin(A) from the equation sin(A) = BH/16, we have:
(BH/16) * BC = 8
Simplifying, we get:
BH * BC = 128
Since we already know that BH * BC = 128, we can conclude that BC = 8.
Now, let's find the values of angles A and C.
Using the equation sin(A) * BC = 8, we have:
(BH/16) * 8 = 8
Simplifying, we get:
BH = 16
Therefore, angle A is equal to the inverse sine of BH/AC:
A = sin^(-1)(16/16) = sin^(-1)(1) = 90 degrees
Similarly, angle C is equal to the inverse sine of BH/BC:
C = sin^(-1)(16/8) = sin^(-1)(2) = 90 degrees
Answer
The angles formed by the altitude BH with the legs of the triangle are both 90 degrees.I hope this helps! Let me know if you have any further questions.


Топ вопросов за вчера в категории Математика





Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili