
Сумма двух чисел равна 22.когда одно слагаемое увеличили в 5 раз, а другое - в 3 раза, то новая
сумма оказалась равной 96. найдите эти числа

Ответы на вопрос

5a + 3b = 96
5a + 5b = 110
5a + 3b = 96
2b = 14
b = 7
a = 22 - 7 = 15
7 и 15



Давайте представим два числа, которые мы ищем, как x и y.
Условие гласит, что сумма двух чисел равна 22, поэтому мы можем записать первое уравнение:
x + y = 22 ---(уравнение 1)
Затем условие гласит, что одно из слагаемых увеличили в 5 раз, а другое - в 3 раза, и новая сумма равна 96. Мы можем записать это второе уравнение:
5x + 3y = 96 ---(уравнение 2)
Теперь у нас есть система уравнений, состоящая из уравнений 1 и 2. Мы можем решить эту систему уравнений, чтобы найти значения x и y.
Метод 1: Метод подстановки
Мы можем начать с первого уравнения и решить его относительно одной переменной. Для примера, решим его относительно x:
x = 22 - y
Теперь мы можем подставить это выражение во второе уравнение:
5(22 - y) + 3y = 96
Раскроем скобки и упростим уравнение:
110 - 5y + 3y = 96
Упростим дальше:
110 - 2y = 96
Вычтем 110 из обеих сторон:
-2y = -14
Разделим обе стороны на -2:
y = 7
Теперь, когда у нас есть значение y, мы можем подставить его обратно в первое уравнение, чтобы найти значение x:
x = 22 - y x = 22 - 7 x = 15
Таким образом, первое число равно 15, а второе число равно 7.
Метод 2: Метод сложения
Мы также можем решить эту систему уравнений, сложив уравнения 1 и 2, чтобы устранить переменную y:
(x + y) + (5x + 3y) = 22 + 96
Раскроем скобки и упростим уравнение:
6x + 4y = 118 ---(уравнение 3)
Теперь у нас есть новое уравнение 3, которое не содержит переменную y. Мы можем решить его относительно переменной x:
6x = 118 - 4y
x = (118 - 4y) / 6
Теперь мы можем подставить это выражение в первое уравнение:
(118 - 4y) / 6 + y = 22
Умножим обе стороны на 6, чтобы избавиться от дроби:
118 - 4y + 6y = 132
Упростим уравнение:
2y = 14
Разделим обе стороны на 2:
y = 7
Теперь, когда у нас есть значение y, мы можем подставить его обратно в третье уравнение, чтобы найти значение x:
6x + 4y = 118 6x + 4(7) = 118 6x + 28 = 118 6x = 90 x = 15
Таким образом, первое число равно 15, а второе число равно 7.
Итак, найденные числа равны 15 и 7.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili