Вопрос задан 26.02.2019 в 08:18. Предмет Математика. Спрашивает Дубакина Полина.

составь и реши обратную задачу два самолета вылетели аэродрома в одно и тоже время противоположных

направлениях через 10 минут после вылета расстояние между ними было 270 километров первый самолёт летел со средней скоростью 15 километров минуту с какой средней скоростью летел 2 самолет составить и решить обратную задачу
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Лашук Дарья.
Перв самол 15км/мин . 10мин =150 км пролетел
втор самол 270-150=120 км пролетел
120:10=12 км/мин скорость второго
Перв самол летел со скоростью 15 км/мин. Второй - пролетел 120 км. Оба летели 10 мин, удаляясь друг от друга.Какое расстояние между ними ч/з 10 мин? Как-то так...
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте решим данную задачу. Обратная задача будет заключаться в определении времени, через которое расстояние между самолетами станет равным 0.

Обозначим: - \( v_1 \) - скорость первого самолета, - \( v_2 \) - скорость второго самолета, - \( t \) - время, прошедшее с момента вылета.

По условию задачи, через 10 минут расстояние между самолетами составило 270 километров. За это время первый самолет пролетел \( 15 \cdot \frac{10}{60} = 2.5 \) километра, а второй - \( v_2 \cdot \frac{10}{60} \) километра.

Таким образом, у нас есть следующее уравнение:

\[ 270 = v_1 \cdot t - 2.5 + v_2 \cdot t \cdot \frac{1}{6} \]

Также у нас есть условие о том, что оба самолета вылетели в одно и то же время, поэтому \( t \) - общее время полета обоих самолетов.

Теперь давайте решим систему уравнений. Учитывая, что \( v_1 = 15 \) км/мин, подставим известные значения:

\[ 270 = 15 \cdot t - 2.5 + v_2 \cdot t \cdot \frac{1}{6} \]

Полученное уравнение содержит две неизвестные (\( t \) и \( v_2 \)), и, следовательно, нам нужно еще одно уравнение, чтобы решить систему. Однако в условии задачи нет информации о скорости второго самолета. Если бы у нас была эта информация, мы могли бы составить второе уравнение и решить систему.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос