Вопрос задан 25.02.2019 в 01:45. Предмет Математика. Спрашивает Галиев Богдан.

Три грузчика разгар ужали вагоны с продуктами. Третий грузчик раз грузил в три раза больше первого

и на 123 ц больше второго. Сколько центнеров раз грузил каждый грузчик, если весь груз составил 1.522 ц? Пожалуйста помогите срочно!!!
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Скребец Полина.
300/х - 250/ х+2 =50
300(х+2) - 250х =50 (х2+2х)
300х+600-250х=50х2+100х
50х2+50х-600=0
х2+х-120=0
х- дней 1 работал
х+2- 2
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given information about three loaders who are unloading wagons with products. The third loader unloaded three times more than the first loader and 123 centners more than the second loader. We need to determine how many centners each loader unloaded if the total load was 1.522 centners.

Solution

Let's assume that the first loader unloaded x centners.

According to the given information, the third loader unloaded three times more than the first loader, so the third loader unloaded 3x centners.

The third loader also unloaded 123 centners more than the second loader. Let's assume that the second loader unloaded y centners. Therefore, the third loader unloaded y + 123 centners.

The total load was 1.522 centners, so we can set up the following equation:

x + y + (y + 123) + 3x = 1.522

Simplifying the equation:

4x + 2y = 1.522 - 123

4x + 2y = 1.399

Now we have a system of two equations with two variables. We can solve this system to find the values of x and y.

Solving the System of Equations

To solve the system of equations, we can use substitution or elimination method. Let's use the elimination method.

Multiplying the second equation by 2, we get:

8x + 4y = 2.798

Subtracting the first equation from the second equation, we get:

(8x + 4y) - (4x + 2y) = 2.798 - 1.399

4x + 2y = 1.399

This equation is the same as the second equation we obtained earlier. Therefore, the system of equations is dependent, meaning there are infinitely many solutions.

Let's solve for x in terms of y:

4x + 2y = 1.399

4x = 1.399 - 2y

x = (1.399 - 2y) / 4

Now we can substitute this expression for x in the first equation:

x + y + (y + 123) + 3x = 1.522

((1.399 - 2y) / 4) + y + (y + 123) + 3((1.399 - 2y) / 4) = 1.522

Simplifying the equation:

(1.399 - 2y) + 4y + 4(y + 123) + 3(1.399 - 2y) = 6.088

Simplifying further:

1.399 - 2y + 4y + 4y + 492 + 3.399 - 6y = 6.088

Combining like terms:

9.798 - y = 6.088

Subtracting 9.798 from both sides:

-y = 6.088 - 9.798

-y = -3.71

Multiplying both sides by -1:

y = 3.71

Now we can substitute this value of y back into the expression for x:

x = (1.399 - 2(3.71)) / 4

x = (1.399 - 7.42) / 4

x = -6.021 / 4

x = -1.50525

Since we cannot have negative values for the number of centners unloaded, we can conclude that there is no valid solution to this problem.

Therefore, we cannot determine how many centners each loader unloaded given the information provided.

I apologize for the inconvenience. If you have any other questions, feel free to ask!

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос