
Cos^4a-sin^4a=1-2sin^2a


Ответы на вопрос

(cosa)^4 - (sina)^4 = ((cosa)^2 - (sina)^2) * ((cosa)^2 + (sina)^2) (разность квадратов)
= cos(2a) * 1 = 1 - 2*(sina)^2
второе не очень понятно: sin18^0 - это sin 18 градусов???
sin18 * sin12 = sin(30-12) * sin12 = (sin30*cos12 - cos30*sin12) * sin12 = (1/2 * cos12 - корень(3)/2 * sin12) * sin12 = 1/2 * cos12 * sin12 - корень(3)/2 * sin12 * sin12 = 1/4 * sin24 - корень(3)/2 * (sin12)^2 = 1/4 * sin24 - корень(3)/4 * (1-cos24) =
1/4 * sin24 + корень(3)/4 * cos24 - корень(3)/4



Simplifying the equation
To prove the equation cos^4(a) - sin^4(a) = 1 - 2sin^2(a), let's start by simplifying both sides of the equation separately.
Simplifying the left-hand side (LHS)
We'll start by simplifying the left-hand side (LHS) of the equation cos^4(a) - sin^4(a).
Recall the identities for the fourth power of cosine and sine:
cos^4(a) = (cos^2(a))^2 sin^4(a) = (sin^2(a))^2
Using these identities, we can rewrite the LHS of the equation as:
cos^4(a) - sin^4(a) = (cos^2(a))^2 - (sin^2(a))^2
Now, let's apply the difference of squares identity:
a^2 - b^2 = (a + b)(a - b)
Using this identity, we can rewrite the LHS as:
cos^4(a) - sin^4(a) = [(cos^2(a) + sin^2(a))(cos^2(a) - sin^2(a))]
Recall the Pythagorean identity:
cos^2(a) + sin^2(a) = 1
Using this identity, we can simplify further:
cos^4(a) - sin^4(a) = [1(cos^2(a) - sin^2(a))]
Recall the difference of squares identity:
a^2 - b^2 = (a + b)(a - b)
We can apply this identity again to get:
cos^4(a) - sin^4(a) = (cos^2(a) + sin^2(a))(cos^2(a) - sin^2(a))
Finally, using the Pythagorean identity, we know that cos^2(a) + sin^2(a) = 1. Substituting this identity into the equation, we get:
cos^4(a) - sin^4(a) = (1)(cos^2(a) - sin^2(a))
Thus, the left-hand side simplifies to:
cos^4(a) - sin^4(a) = cos^2(a) - sin^2(a)
Simplifying the right-hand side (RHS)
Next, let's simplify the right-hand side (RHS) of the equation 1 - 2sin^2(a).
The RHS is already in a simplified form, so we don't need to perform any further simplification.
Comparing the LHS and RHS
Now, let's compare the simplified LHS and RHS:
cos^4(a) - sin^4(a) = cos^2(a) - sin^2(a) = 1 - 2sin^2(a)
As we can see, the left-hand side (LHS) is equal to the right-hand side (RHS), thus proving the equation.
Therefore, we have shown that cos^4(a) - sin^4(a) = 1 - 2sin^2(a) is true for all values of angle 'a'.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili