Вопрос задан 24.02.2019 в 19:40. Предмет Математика. Спрашивает Скоробогатов Семён.

Два поезда вышли одновременно навстречу друг другу. первый поезд шёл со скоростью 75км/ч а второй

79км/ч и прошёл до встречи 316 км. какое расстояние прошёл до встречи первый поезд.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Таборская Алла.
316 : 79= 4 
75 * 4 = 300
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given two trains that start simultaneously and travel towards each other. The first train has a speed of 75 km/h, the second train has a speed of 79 km/h, and they meet after traveling a distance of 316 km. We need to find the distance traveled by the first train before the meeting.

Solution

To find the distance traveled by the first train before the meeting, we can use the formula:

Distance = Speed × Time

Let's assume the time taken for the meeting is 't' hours. Since both trains are traveling towards each other, the sum of the distances traveled by both trains will be equal to the total distance between them.

Let's calculate the distance traveled by the first train:

Distance of the first train = Speed of the first train × Time

The distance traveled by the second train can be calculated using the formula:

Distance of the second train = Speed of the second train × Time

Since the total distance between the two trains is 316 km, we can write the equation:

Distance of the first train + Distance of the second train = Total distance

Substituting the values, we get:

(Speed of the first train × Time) + (Speed of the second train × Time) = Total distance

Simplifying the equation, we have:

Time × (Speed of the first train + Speed of the second train) = Total distance

Now, we can solve for 't' using the given values:

t × (75 km/h + 79 km/h) = 316 km

Simplifying further:

t × 154 km/h = 316 km

Dividing both sides by 154 km/h:

t = 316 km / 154 km/h

Calculating the value of 't':

t ≈ 2.05 hours

Now, we can find the distance traveled by the first train:

Distance of the first train = Speed of the first train × Time

Substituting the values:

Distance of the first train = 75 km/h × 2.05 hours

Calculating the value:

Distance of the first train ≈ 153.75 km

Therefore, the first train traveled approximately 153.75 km before the meeting.

Answer

The first train traveled approximately 153.75 km before the meeting with the second train.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос