
Будем называть число сбалансированным, если все его цифры различны и четные цифры чередуются с
нечетными. Например, числа 12349, 49 и 2507 - сбалансированные, а числа 245, 252 - нет.а)Напишите наименьшее семизначное сбалансированное число, которое делится на 5.б)Существует ли пятизначное сбалансированное число, которое делится на 12.Ответ обоснуйте:

Ответы на вопрос

б) число должно делиться на 3 и на 4. На 4 число делится, если число, образованное двумя последними цифрами делится на 4. Понятно, что таке число парное. Поэтому, чтобы быть сбалансированным, оно может оканчиваться цифрами 12, 16, 32, 36, 52, 56, 72, 76, 92, 96.
Таким образом наше число должно начинаться с парной цифры.
Подберем, чтобы сумма цифр делилась на 3 и при этом выполнялись условия сбалансированности.
Например, 69012 - число удовлетворяющее услвия сбалансированности, которое делится на 3 и 4.



а) Чтобы найти наименьшее семизначное сбалансированное число, которое делится на 5, мы должны учесть следующие условия: 1) Все его цифры должны быть различными. 2) Четные цифры должны чередоваться с нечетными. 3) Число должно быть кратным 5.
Начнем с наименьшей четной цифры, которая является 2. Затем добавим наименьшую нечетную цифру, которая является 1. Таким образом, мы получаем число 21.
Для того чтобы число стало семизначным, мы можем добавить ноль в конец числа. Тогда получается число 210, которое делится на 5 и является наименьшим семизначным сбалансированным числом, которое делится на 5.
б) Для того чтобы определить, существует ли пятизначное сбалансированное число, которое делится на 12, мы должны учесть следующие условия: 1) Все его цифры должны быть различными. 2) Четные цифры должны чередоваться с нечетными. 3) Число должно быть кратным 12.
Мы знаем, что любое число, которое делится на 12, должно быть кратно 4 и 3 одновременно. Однако, пятизначное число, которое делится на 12, должно быть кратно 100, что означает, что его последние две цифры должны быть кратны 4. Но так как все цифры должны быть различными, мы не можем получить пятизначное сбалансированное число, которое делится на 12.
Таким образом, пятизначного сбалансированного числа, которое делится на 12, не существует.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili