Вопрос задан 22.02.2019 в 22:40. Предмет Математика. Спрашивает Шеховцова Виктория.

Найдите корни уравнения х²+х=12.

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Мастерских Дима.
X+x=12
2x=12
x=12:2
x=6
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для того чтобы найти корни уравнения x² + x = 12, нужно сначала привести его к квадратному виду, а именно x² + x - 12 = 0.

Далее, мы можем решить это уравнение с помощью факторизации или квадратного корня.

1. Факторизация: Мы ищем два числа, которые при умножении дают -12, а при сложении дают 1 (коэффициент перед x). Такие числа -3 и 4, поэтому уравнение можно записать в виде: (x - 3)(x + 4) = 0

Теперь мы можем найти значения x, при которых (x - 3) = 0 или (x + 4) = 0.

(x - 3) = 0 => x = 3 (x + 4) = 0 => x = -4

Таким образом, у нас два корня уравнения: x = 3 и x = -4.

2. Квадратный корень: Мы можем найти корни уравнения, применив квадратный корень ко всем частям уравнения:

√(x² + x - 12) = √0

Теперь мы можем найти значения x, при которых x² + x - 12 = 0.

Используя квадратный корень, мы получаем:

x = (-1 ± √(1 + 4*12)) / 2 x = (-1 ± √(1 + 48)) / 2 x = (-1 ± √49) / 2 x = (-1 ± 7) / 2

Таким образом, мы получаем два корня: x = (-1 + 7) / 2 = 3 и x = (-1 - 7) / 2 = -4.

Итак, корни уравнения x² + x = 12 равны 3 и -4.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос