Вопрос задан 22.02.2019 в 14:28. Предмет Математика. Спрашивает Хабарова Полина.

Выписаны первые несколько членов арифметической прогрессии: 1; 3; 5; ... . Найдите сумму первых

шестидесяти её членов
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Зиннатов Ильмир.
D=2
An=1+2(60-1)=119
S=A1+An/2*n=(1+119)/2*60=60*60=3600
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Я могу помочь вам с вашим вопросом. Выписаны первые несколько членов арифметической прогрессии: 1; 3; 5; ... . Найдите сумму первых шестидесяти её членов.

Для решения этой задачи, нам нужно знать формулу суммы арифметической прогрессии. Она имеет вид:

$$S_n = \frac{n(a_1 + a_n)}{2}$$

где $S_n$ - сумма первых $n$ членов, $a_1$ - первый член, $a_n$ - $n$-й член.

В нашем случае, $n = 60$, $a_1 = 1$, а $a_n$ можно найти, используя формулу общего члена арифметической прогрессии:

$$a_n = a_1 + (n - 1)d$$

где $d$ - разность прогрессии.

Из первых членов прогрессии, мы можем определить, что $d = 2$. Тогда:

$$a_{60} = 1 + (60 - 1)2 = 119$$

Подставляя эти значения в формулу суммы, получаем:

$$S_{60} = \frac{60(1 + 119)}{2} = 3600$$

Ответ: сумма первых шестидесяти членов арифметической прогрессии равна 3600.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос