Вопрос задан 22.02.2019 в 08:36. Предмет Математика. Спрашивает Чемшит Алексей.

Диагональ прямоугольного параллелепипеда равна d и образует с плоскостью одной боковой грани угол

альфа , а другой - угол бетта. Найдите площадь боковой поверхности параллелепипеда
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Маманжанова Диля.
Параллелепипед АВСDА1В1С1D1, диагональ А1С=d
АВ=СD=d*cosa
AD=BC=d*cosb
A1D=d*sina
A1B=d*sinb
AA1=√(d^2*sin^2a-d^2*cos^2a)=d*√sin^2a-cos^2a
Площадь боковой поверхности S=H*h=2(AB+AD)*d*√sin^2a-cos^2a=
=2*d^2*(cosa+cosb)*√sin^2a-cos^2a
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Finding the Surface Area of a Rectangular Parallelepiped

To find the surface area of a rectangular parallelepiped, we need to know the length, width, and height of the parallelepiped. However, in this case, we are given the diagonal of the parallelepiped and the angles it forms with the two lateral faces.

Let's denote the length, width, and height of the parallelepiped as L, W, and H, respectively. The diagonal of the parallelepiped is denoted as d, and it forms angles α and β with the two lateral faces.

To find the surface area of the parallelepiped, we can use the formula:

Surface Area = 2(LW + LH + WH)

Now, let's derive the values of L, W, and H in terms of d, α, and β.

From the given information, we can form a right-angled triangle with the diagonal d as the hypotenuse and the length L, width W, and height H as the sides.

Using trigonometric ratios, we can relate the angles α and β with the sides of the parallelepiped.

From the right-angled triangle, we have:

cos(α) = L/d cos(β) = W/d

Solving these equations for L and W, we get:

L = d * cos(α) W = d * cos(β)

Now, we can substitute these values into the surface area formula:

Surface Area = 2(d * cos(α) * d * cos(β) + d * cos(α) * H + d * cos(β) * H) Surface Area = 2d^2(cos(α)cos(β) + cos(α)H + cos(β)H)

Therefore, the surface area of the parallelepiped is 2d^2(cos(α)cos(β) + cos(α)H + cos(β)H).

Please note that the above derivation assumes that the given angles α and β are the angles between the diagonal and the lateral faces of the parallelepiped. If the angles are different, the formula may vary.

I hope this helps! Let me know if you have any further questions.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос