
Для экспедиции, работающей в тайге сбросили с вертолёта упаковку с продуктами, которая упала на
землю через 3с. С какой высоты была сброшена эта упаковка, если в первую секунду она пролетела 4 целых 9\10м,а в каждую следующую секунду она пролетала на 9 4/5 м больше,чем в предыдущий?ПОМОГИТЕ ПОЖАЛУЙСТА!!!!!

Ответы на вопрос

d=9,8
S3=(2a1+2a)*3/2=2(a1+d)*3/2=(a1+d)*3=(4,9+9,8)*3=14,7*3=44,1
Ответ с высоты 44,1м



4 9/10+9 4/5=4 9/10+9 8/10=13 17/10=14 7/10=14,7м-пролетела во вторую
14 7/10+9 4/5=14 7/10+9 8/10=23 15/10=24 5/10=24,5 м-в третью
4,9+14,7+24,5=44,1м



Calculating the Height from Which the Package Was Dropped
To calculate the height from which the package was dropped, we can use the information provided about the distance traveled by the package in each second.
Given: - In the first second, the package traveled 4.9 meters. - In each subsequent second, the package traveled 9 4/5 meters more than in the previous second.
Let's calculate the height from which the package was dropped.
In the first second, the package traveled 4.9 meters. In the second second, it traveled 4.9 + 9 4/5 meters, and in the third second, it traveled (4.9 + 9 4/5) + 9 4/5 meters.
So, the total distance traveled by the package in 3 seconds can be calculated as follows: 4.9 + (4.9 + 9 4/5) + (4.9 + 9 4/5 + 9 4/5) = Total distance traveled in 3 seconds.
Let's calculate the total distance traveled by the package in 3 seconds.
4.9 + (4.9 + 9 4/5) + (4.9 + 9 4/5 + 9 4/5) = 4.9 + 14.8 + 24.7 = Total distance traveled in 3 seconds.
The total distance traveled by the package in 3 seconds is 44.4 meters.
Now, to find the height from which the package was dropped, we can use the formula for distance traveled under constant acceleration: \[ s = ut + \frac{1}{2}at^2 \] where: - \( s \) = distance traveled - \( u \) = initial velocity - \( a \) = acceleration (in this case, due to gravity) - \( t \) = time
Given that the package was dropped, the initial velocity \( u \) is 0.
We can use the formula to find the height from which the package was dropped.
\[ s = \frac{1}{2}gt^2 \] where: - \( g \) = acceleration due to gravity (approximately 9.81 m/s^2) - \( t \) = time (3 seconds)
Let's calculate the height from which the package was dropped using the formula.
\[ s = \frac{1}{2} \times 9.81 \times 3^2 \] \[ s = \frac{1}{2} \times 9.81 \times 9 \] \[ s = 4.905 \times 9 \] \[ s = 44.145 \]
The package was dropped from a height of approximately 44.145 meters.
Source: ' 420 6 : ...' Snippet: ```... , 3 . , ...```
Source: ' [ ...' Snippet: ```- , . , -, , ...```


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili