Вопрос задан 20.02.2019 в 17:06. Предмет Математика. Спрашивает Корецкая Алинка.

Вместо звездочки в записи 152* поставьте цифру так, чтобы полученное число было кратным 3 (

рассмотрите все возможные случаи)
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Вечеркова Полина.
1,4,7
все, больше нет вроде
0 0
Отвечает Рамид Камалов.
1,4 ,7 вроде так ! Удачки тебе
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Finding a Number that is a Multiple of 3

To find a number that is a multiple of 3, we need to replace the asterisk (*) in the expression "152*" with a digit so that the resulting number is divisible by 3. Let's consider all possible cases:

1. 1520: If we replace the asterisk with 0, the resulting number is 1520, which is divisible by 3 because the sum of its digits (1 + 5 + 2 + 0) is 8, and 8 is divisible by 3.

2. 1521: If we replace the asterisk with 1, the resulting number is 1521, which is not divisible by 3 because the sum of its digits (1 + 5 + 2 + 1) is 9, and 9 is not divisible by 3.

3. 1522: If we replace the asterisk with 2, the resulting number is 1522, which is not divisible by 3 because the sum of its digits (1 + 5 + 2 + 2) is 10, and 10 is not divisible by 3.

4. 1523: If we replace the asterisk with 3, the resulting number is 1523, which is divisible by 3 because the sum of its digits (1 + 5 + 2 + 3) is 11, and 11 is not divisible by 3.

5. 1524: If we replace the asterisk with 4, the resulting number is 1524, which is not divisible by 3 because the sum of its digits (1 + 5 + 2 + 4) is 12, and 12 is divisible by 3.

6. 1525: If we replace the asterisk with 5, the resulting number is 1525, which is not divisible by 3 because the sum of its digits (1 + 5 + 2 + 5) is 13, and 13 is not divisible by 3.

7. 1526: If we replace the asterisk with 6, the resulting number is 1526, which is divisible by 3 because the sum of its digits (1 + 5 + 2 + 6) is 14, and 14 is not divisible by 3.

8. 1527: If we replace the asterisk with 7, the resulting number is 1527, which is not divisible by 3 because the sum of its digits (1 + 5 + 2 + 7) is 15, and 15 is divisible by 3.

9. 1528: If we replace the asterisk with 8, the resulting number is 1528, which is not divisible by 3 because the sum of its digits (1 + 5 + 2 + 8) is 16, and 16 is not divisible by 3.

10. 1529: If we replace the asterisk with 9, the resulting number is 1529, which is not divisible by 3 because the sum of its digits (1 + 5 + 2 + 9) is 17, and 17 is not divisible by 3.

Based on these cases, the only number that is a multiple of 3 when the asterisk is replaced is 1524.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос