Вопрос задан 19.02.2019 в 09:04. Предмет Математика. Спрашивает Гаврилица Анна.

Найдите корень управления (875,876) 1)х-5/4=7-2х-11/3; 2)5+7х-12/3=х+13; 3) 2-7y/6+4y+7/3=-y/2; 4)

7y-1/12-y+1/4=2y+5/3помогите пожалуйста срочно нужна
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Темиргалиев Рысбек.
1) x-5/4=7-2x-11/3
3x=10/3+5/4
3x=40/12+15/12
3x=55/12
x=55/36

2) 
5+7x-12/3=x+12
6x=11
x=11/6

3) 2-7y/6+4y+7/3=-y/2
2-7y/6+24y/6+7/3+3y/6=0
20y/6=-13/3
20y=-26
y=-26/20=-13/10=-1.3

4)7y-1/12-y+1/4=2y+5/3
4y=5/3+1/12-1/4
4y=20/12+1/12-3/12
4y=18/12
y=18/3=6
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Solving the Equations

To find the roots of the given equations, we will solve them one by one. Let's start with the first equation:

Equation 1: 1) (875,876)x - 5/4 = 7 - 2x - 11/3

To solve this equation, we need to simplify and isolate the variable x. Let's go step by step:

1) Multiply through by the common denominator to eliminate the fractions: 3 * (875,876)x - 3 * (5/4) = 3 * (7) - 3 * (2x) - 3 * (11/3) 2,627,628x - 15/4 = 21 - 6x - 11

2) Combine like terms: 2,627,628x - 15/4 = 10 - 6x

3) Add 6x to both sides: 2,627,628x + 6x - 15/4 = 10

4) Combine like terms: 2,633,628x - 15/4 = 10

5) Add 15/4 to both sides: 2,633,628x = 10 + 15/4

6) Simplify the right side: 2,633,628x = 40/4 + 15/4 2,633,628x = 55/4

7) Divide both sides by 2,633,628 to solve for x: x = (55/4) / 2,633,628 x ≈ 0.00001047

Therefore, the root of Equation 1 is approximately x ≈ 0.00001047.

Now let's move on to the second equation:

Equation 2: 2) 5 + 7x - 12/3 = x + 13

To solve this equation, we will follow similar steps:

1) Multiply through by the common denominator to eliminate the fraction: 3 * (5 + 7x) - 3 * (12/3) = 3 * (x + 13) 15 + 21x - 12 = 3x + 39

2) Combine like terms: 21x + 3 = 3x + 39

3) Subtract 3x from both sides: 21x - 3x + 3 = 39

4) Combine like terms: 18x + 3 = 39

5) Subtract 3 from both sides: 18x = 39 - 3 18x = 36

6) Divide both sides by 18 to solve for x: x = 36 / 18 x = 2

Therefore, the root of Equation 2 is x = 2.

Moving on to the third equation:

Equation 3: 3) 2 - 7y/6 + 4y + 7/3 = -y/2

To solve this equation, we will follow similar steps:

1) Multiply through by the common denominator to eliminate the fractions: 6 * (2 - 7y/6 + 4y) + 6 * (7/3) = 6 * (-y/2) 12 - 7y + 24y + 14 = -3y

2) Combine like terms: 12 + 17y + 14 = -3y

3) Combine like terms: 26 + 17y = -3y

4) Add 3y to both sides: 26 + 17y + 3y = 0

5) Combine like terms: 26 + 20y = 0

6) Subtract 26 from both sides: 20y = -26

7) Divide both sides by 20 to solve for y: y = -26 / 20 y = -1.3

Therefore, the root of Equation 3 is y = -1.3.

Finally, let's solve the fourth equation:

Equation 4: 4) 7y - 1/12 - y + 1/4 = 2y + 5/3

To solve this equation, we will follow similar steps:

1) Multiply through by the common denominator to eliminate the fractions: 12 * (7y - 1/12) - 12 * (y + 1/4) = 12 * (2y + 5/3) 84y - 1 - 3y - 3 = 24y + 20

2) Combine like terms: 81y - 4 = 24y + 20

3) Subtract 24y from both sides: 81y - 24y - 4 = 20

4) Combine like terms: 57y - 4 = 20

5) Add 4 to both sides: 57y = 20 + 4 57y = 24

6) Divide both sides by 57 to solve for y: y = 24 / 57 y ≈ 0.421

Therefore, the root of Equation 4 is approximately y ≈ 0.421.

To summarize, the roots of the given equations are: 1) x ≈ 0.00001047 2) x = 2 3) y = -1.3 4) y ≈ 0.421

Please note that these solutions are approximate and rounded to a reasonable number of decimal places.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос