Вопрос задан 18.02.2019 в 18:12. Предмет Математика. Спрашивает Воронин Егор.

Решить задачу- два слесаря сделали 300 деталей имея одинаковую норму выработки.Первый работал 7

ч.,а второй 8ч. Сколько деталей сделал каждый?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Каратуша Алёша.
1) 7 + 8 = 15 часов вместе работали
2) 300 : 15 = 20 деталей в час производительность
3) 20 * 7 = 140 дет первый сделал
4) 20 * 8 = 160 дет второй сделал
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given that two locksmiths made a total of 300 parts, with each locksmith having the same production rate. The first locksmith worked for 7 hours, while the second locksmith worked for 8 hours. We need to determine how many parts each locksmith made.

Solution

Let's assume that the first locksmith made x parts and the second locksmith made y parts.

According to the problem, the first locksmith worked for 7 hours, so their production rate can be calculated as x/7 parts per hour.

Similarly, the second locksmith worked for 8 hours, so their production rate can be calculated as y/8 parts per hour.

Since both locksmiths have the same production rate, we can set up the following equation:

x/7 = y/8

To solve for x and y, we can cross-multiply:

8x = 7y

Now, we can solve this equation to find the values of x and y.

Calculation

To solve the equation 8x = 7y, we can use a common method called trial and error. We can start by assuming a value for x and then calculate the corresponding value of y.

Let's assume x = 8. Substituting this value into the equation, we get:

8(8) = 7y

Simplifying, we have:

64 = 7y

Solving for y, we find:

y = 64/7 ≈ 9.14

Since y should be a whole number (as it represents the number of parts made by the second locksmith), we can try a different value for x.

Let's assume x = 16. Substituting this value into the equation, we get:

8(16) = 7y

Simplifying, we have:

128 = 7y

Solving for y, we find:

y = 128/7 ≈ 18.29

Again, y should be a whole number, so we need to try another value for x.

Let's assume x = 24. Substituting this value into the equation, we get:

8(24) = 7y

Simplifying, we have:

192 = 7y

Solving for y, we find:

y = 192/7 ≈ 27.43

Once again, y should be a whole number, so we need to try another value for x.

Let's assume x = 32. Substituting this value into the equation, we get:

8(32) = 7y

Simplifying, we have:

256 = 7y

Solving for y, we find:

y = 256/7 ≈ 36.57

Since y should be a whole number, we can try one more value for x.

Let's assume x = 40. Substituting this value into the equation, we get:

8(40) = 7y

Simplifying, we have:

320 = 7y

Solving for y, we find:

y = 320/7 ≈ 45.71

Again, y should be a whole number, so we need to try another value for x.

Let's assume x = 48. Substituting this value into the equation, we get:

8(48) = 7y

Simplifying, we have:

384 = 7y

Solving for y, we find:

y = 384/7 ≈ 54.86

Since y should be a whole number, we can try one more value for x.

Let's assume x = 56. Substituting this value into the equation, we get:

8(56) = 7y

Simplifying, we have:

448 = 7y

Solving for y, we find:

y = 448/7 = 64

Now we have found a whole number value for y. Therefore, the second locksmith made 64 parts.

To find the value of x, we can substitute the value of y into the equation:

8x = 7(64)

Simplifying, we have:

8x = 448

Solving for x, we find:

x = 448/8 = 56

Therefore, the first locksmith made 56 parts.

Answer

The first locksmith made 56 parts and the second locksmith made 64 parts.

Please let me know if I can help you with anything else.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос