
СРОЧНО,ПОЖАЛУЙСТА! Найти площадь фигуры,ограниченной линиями y=1/x, t=x, x=2. подробное
решение,пожалуйста.

Ответы на вопрос




Для нахождения площади фигуры, ограниченной линиями y=1/x, t=x и x=2, мы можем использовать метод интегрирования. Давайте разобьем фигуру на две части: треугольник и прямоугольник.
Нахождение площади треугольника
Для нахождения площади треугольника, ограниченного линиями y=1/x и t=x, мы можем использовать формулу для площади треугольника: S = (1/2) * основание * высота.Основание треугольника будет равно разности значений x на границах треугольника: x=1 и x=2. высота треугольника будет равна разности значений y на границах треугольника: y=1/x и t=x.
Таким образом, площадь треугольника будет равна: S_треугольника = (1/2) * (2-1) * (1/x - x)
Нахождение площади прямоугольника
Для нахождения площади прямоугольника, ограниченного линиями t=x и x=2, мы можем использовать формулу для площади прямоугольника: S = длина * ширина.Длина прямоугольника будет равна разности значений x на границах прямоугольника: t=x и x=2. Ширина прямоугольника будет равна разности значений y на границах прямоугольника: y=1/x и y=0.
Таким образом, площадь прямоугольника будет равна: S_прямоугольника = (2 - x) * (1/x - 0)
Общая площадь фигуры
Общая площадь фигуры будет равна сумме площадей треугольника и прямоугольника: S_фигуры = S_треугольника + S_прямоугольникаТеперь, давайте подставим значения и решим задачу.
Решение
1. Найдем площадь треугольника: S_треугольника = (1/2) * (2-1) * (1/x - x) = (1/2) * (1) * (1/x - x) = 1/2 * (1/x - x)2. Найдем площадь прямоугольника: S_прямоугольника = (2 - x) * (1/x - 0) = (2 - x) * (1/x) = (2/x - 1)
3. Найдем общую площадь фигуры: S_фигуры = S_треугольника + S_прямоугольника = 1/2 * (1/x - x) + (2/x - 1)
Таким образом, площадь фигуры, ограниченной линиями y=1/x, t=x и x=2, равна 1/2 * (1/x - x) + (2/x - 1).
Пожалуйста, обратите внимание, что это предполагаемый ответ, основанный на предоставленных данными. Если у вас есть дополнительные требования или уточнения, пожалуйста, сообщите мне.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili