Вопрос задан 18.02.2019 в 04:23. Предмет Математика. Спрашивает Леонтьев Никита.

Помогите, пожалуйста задачу решить!!Один автомат в минуту закрывает 40 банок, а другой-на 5 банок

больше первого. Сколько банок закроют автоматы за 3/4(три четвертых) часа при их одновременном включении? За сколько времени, работая вместе, они закроют 5780 банок?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Никулин Рамиль.
40+5=45 второй автомат. 40+45=85 банок в минуту оба автомата. 85•45=3825 банок за 45 мин. 5780:85=68мин
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Task Solution

To solve this problem, we'll first calculate the number of jars each machine closes in 3/4 of an hour when they are both turned on simultaneously. Then, we'll determine the time it takes for both machines to close 5780 jars when working together.

1. Number of Jars Closed in 3/4 Hour: - The first machine closes 40 jars per minute, and the second machine closes 5 more jars per minute than the first. - We'll calculate the total number of jars closed by both machines in 3/4 of an hour.

2. Time to Close 5780 Jars: - We'll calculate the time it takes for both machines to close 5780 jars when working together.

Let's proceed with the calculations.

Number of Jars Closed in 3/4 Hour:

The first machine closes 40 jars per minute, and the second machine closes 5 more jars per minute than the first.

The total number of jars closed by both machines in 3/4 of an hour can be calculated as follows: 40 jars/minute * 3/4 hour + (40 jars/minute + 5 jars/minute) * 3/4 hour

Time to Close 5780 Jars:

We'll calculate the time it takes for both machines to close 5780 jars when working together.

Let's perform the calculations.

40 jars/minute * 3/4 hour + (40 jars/minute + 5 jars/minute) * 3/4 hour = Total number of jars closed in 3/4 hour

To calculate the time it takes for both machines to close 5780 jars when working together, we'll use the formula: Total time = Total jars / (Jars closed per minute by both machines)

Total time = 5780 jars / (40 jars/minute + 40 jars/minute + 5 jars/minute)

I'll calculate the results.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given two machines that close cans. The first machine closes 40 cans per minute, while the second machine closes 5 cans more than the first machine. We need to find out how many cans the machines will close in 3/4 of an hour (45 minutes) when they are both turned on simultaneously. Additionally, we need to determine how long it will take for the machines to close 5780 cans when they are working together.

Solution

To find out how many cans the machines will close in 45 minutes, we can calculate the total number of cans closed by both machines in one minute and then multiply it by 45.

Let's calculate the number of cans closed by the first machine in one minute: - Machine 1: 40 cans per minute

The second machine closes 5 cans more than the first machine, so the number of cans closed by the second machine in one minute is: - Machine 2: 40 + 5 = 45 cans per minute

To find out how many cans the machines will close in 45 minutes, we can add the number of cans closed by both machines in one minute and then multiply it by 45: - Total cans closed in one minute: 40 + 45 = 85 cans - Total cans closed in 45 minutes: 85 * 45 = 3825 cans

Therefore, the machines will close 3825 cans in 45 minutes when they are both turned on simultaneously.

To determine how long it will take for the machines to close 5780 cans when they are working together, we can divide the total number of cans by the number of cans closed in one minute: - Total cans: 5780 cans - Cans closed in one minute: 85 cans

To find the time, we can divide the total number of cans by the number of cans closed in one minute: - Time taken to close 5780 cans: 5780 / 85 = 68 minutes

Therefore, it will take the machines 68 minutes to close 5780 cans when they are working together.

Summary: - The machines will close 3825 cans in 45 minutes when they are both turned on simultaneously. - It will take the machines 68 minutes to close 5780 cans when they are working together.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос