
9sinx * cos x - 7 cos^2x =2 sin^2 x Решите


Ответы на вопрос




Solving the Equation: 9sin(x) * cos(x) - 7cos^2(x) = 2sin^2(x)
To solve the equation 9sin(x) * cos(x) - 7cos^2(x) = 2sin^2(x), we can follow these steps:
Step 1: Simplify the equation using trigonometric identities. Step 2: Rearrange the equation to isolate the trigonometric function. Step 3: Solve for the values of x that satisfy the equation.
Let's go through each step in detail.
Step 1: Simplify the equation using trigonometric identities
We can simplify the equation using the following trigonometric identities:
- sin^2(x) = 1 - cos^2(x) - sin(2x) = 2sin(x)cos(x)
Applying these identities to the equation, we get:
9sin(x) * cos(x) - 7cos^2(x) = 2(1 - cos^2(x))
Simplifying further, we have:
9sin(x) * cos(x) - 7cos^2(x) = 2 - 2cos^2(x)
Step 2: Rearrange the equation to isolate the trigonometric function
To isolate the trigonometric function, we can rearrange the equation as follows:
9sin(x) * cos(x) - 7cos^2(x) - 2 + 2cos^2(x) = 0
Combining like terms, we have:
9sin(x) * cos(x) - 5cos^2(x) - 2 = 0
Step 3: Solve for the values of x that satisfy the equation
To solve the equation, we can factor out common terms:
cos(x)(9sin(x) - 5cos(x)) - 2 = 0
Now, we have two factors:
1. cos(x) = 0 2. 9sin(x) - 5cos(x) = 2
Let's solve each factor separately.
Factor 1: cos(x) = 0
When cos(x) = 0, it means x is equal to π/2 + nπ or 3π/2 + nπ, where n is an integer.
Factor 2: 9sin(x) - 5cos(x) = 2
To solve this equation, we can use the identity sin(2x) = 2sin(x)cos(x). Rearranging the equation, we get:
9sin(x) - 5cos(x) = 2 9sin(x) - 5(2sin(x)cos(x)) = 2 9sin(x) - 10sin(2x) = 2
Now, we can substitute sin(2x) = 2sin(x)cos(x) into the equation:
9sin(x) - 10(2sin(x)cos(x)) = 2 9sin(x) - 20sin(x)cos(x) = 2 sin(x)(9 - 20cos(x)) = 2
We have two factors again:
1. sin(x) = 0 2. 9 - 20cos(x) = 2
Factor 1: sin(x) = 0
When sin(x) = 0, it means x is equal to nπ, where n is an integer.
Factor 2: 9 - 20cos(x) = 2
To solve this equation, we can rearrange it:
20cos(x) = 9 - 2 20cos(x) = 7 cos(x) = 7/20
Using the inverse cosine function, we can find the values of x:
x = arccos(7/20)
Please note that the exact values of x will depend on the range of x you are considering.
In summary, the solutions to the equation 9sin(x) * cos(x) - 7cos^2(x) = 2sin^2(x) are:
1. x = π/2 + nπ or 3π/2 + nπ, where n is an integer. 2. x = arccos(7/20), where x is within the appropriate range.
Please let me know if you need any further clarification or assistance!


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili