Вопрос задан 16.02.2019 в 04:01. Предмет Математика. Спрашивает Подолей Каріна.

Путник встретил троих островитян и спросил каждого: «Сколько рыцарей среди твоих спутников?» Первый

ответил «Ни одного», второй ответил: «Один». Что сказал третий?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Беккер Надежда.
Если первый рыцарь, то он сам себе противоречит. Значит он лжец. Если второй лжец, то на самом деле либо нет рыцарей, либо 2 рыцаря, либо 3, чего быть не может. Следовательно он рыцарь, причём единственный. Значит третий лжец и он скажет либо, что нет рыцарей, либо, что 2 рыцаря, либо 3.
0 0
Отвечает Пичугин Антон.
1) ответил один. первый лжец и значит рыцари есть. потому как если он рыцарь, то рыцари есть среди них.
третий сказал один. правда это или ложь, все равно потому что второй тоже сказал один.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Puzzle Solution: Three Islanders and the Knights

The puzzle involves a traveler meeting three islanders and asking each of them about the number of knights among their companions. The first islander says "None," the second islander says "One." We need to determine what the third islander would say.

To solve this puzzle, we can consider the logic behind the islanders' responses.

1. First Islander's Response: "None" - The first islander's response indicates that there are no knights among their companions.

2. Second Islander's Response: "One" - The second islander's response indicates that there is at least one knight among their companions.

3. Third Islander's Response: ? - Given the responses of the first two islanders, the third islander must be the one who has more than one knight among their companions. This is because if the third islander had said "None," it would contradict the second islander's response, and if they had said "One," it would contradict the first islander's response. Therefore, the third islander would say "Two" or more.

In conclusion, the third islander would say "Two" or more knights among their companions.

This solution is based on the logical deduction from the given information and does not require external sources for verification.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос