
Сколько пятизначных чисел, первая цифра который 3, а последняя 8?


Ответы на вопрос




Answer:
There are 90 five-digit numbers where the first digit is 3 and the last digit is 8.
Explanation:
To find the number of five-digit numbers where the first digit is 3 and the last digit is 8, we can use the following approach:- The first digit is fixed as 3. - The last digit is fixed as 8. - The remaining three digits can be any number from 0 to 9.
Using the multiplication principle, we can calculate the total number of possibilities: - The number of possibilities for the second digit is 10 (0-9). - The number of possibilities for the third digit is 10 (0-9). - The number of possibilities for the fourth digit is 10 (0-9).
So, the total number of five-digit numbers where the first digit is 3 and the last digit is 8 is 1 (for the fixed first digit) * 10 (possibilities for the second digit) * 10 (possibilities for the third digit) * 10 (possibilities for the fourth digit) * 1 (for the fixed last digit), which equals 1 * 10 * 10 * 10 * 1 = 1000.
However, we need to exclude the cases where the second, third, and fourth digits are all 0, as this would result in a four-digit number. Therefore, the total number of five-digit numbers where the first digit is 3 and the last digit is 8 is 1000 - 10 (for the excluded cases) = 990.
Therefore, there are 990 five-digit numbers where the first digit is 3 and the last digit is 8


Топ вопросов за вчера в категории Математика





Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili