
Вопрос задан 12.02.2019 в 14:07.
Предмет Математика.
Спрашивает Сердюк Глеб.
Найдите периметр правильного шестиугольника, меньшая диагональ которого 10 см


Ответы на вопрос

Отвечает Азаренко Анастасия.
Все углы у правильного шестиугольника по 120 градусов, значит мы имеем равнобедренный тупоугольный треугольник (основание - меньшая диагональ шестиугольника, а боковые стороны - две стороны правильн. шестиугольника)
обозначим боковую сторону треугольника через а,
тогда по т. косинусов имеем
(2√3)^2 = a^2 + a^2 - 2 a*a *cos120
12 = 2a^2 +a^2
12 = 3a^2
a^2 = 4
a = 2
периметр
P = 6*a = 6*2 = 12
обозначим боковую сторону треугольника через а,
тогда по т. косинусов имеем
(2√3)^2 = a^2 + a^2 - 2 a*a *cos120
12 = 2a^2 +a^2
12 = 3a^2
a^2 = 4
a = 2
периметр
P = 6*a = 6*2 = 12


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili