Вопрос задан 11.02.2019 в 12:33. Предмет Математика. Спрашивает Ивасенко Саша.

Назовем десятизначное число интересным, если оно делится на 11111 и все его цифры различны. Сколько

существует интересных чисел?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Маженов Шалхар.

се цифры интересного числа различны, поэтому их сумма равна 45, и число делится на 9. Значит, оно делится на 99999. 
Рассмотрим интересное число X =  = 105·  +  = 99999·  +  + 
Мы видим, что сумма  +  делится на 99999. Но эта сумма меньше, чем 2·99999, поэтому она равна 99999. Значит, 
a0 + a5 = a1 + a6 = ... = a4 + a9 = 9. 
Очевидно, верно и обратное: число с такими (различными) цифрами будет интересным. 
Итак, последние пять цифр интересного числа полностью определяются пятью его первыми цифрами, а первые пять цифр нужно выбирать так, чтобы никакие две из них не давали в сумме 9 и a9 не равнялось нулю. 
Следовательно, цифру a9 можно выбрать девятью способами, цифру a8 – восемью (нельзя выбирать a9 и 9 – a9), после этого a7 – шестью способами, a6 – четырьмя и a5 – двумя. Отсюда получаем 9·8·6·4·2 = 3456 возможностей.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос