Вопрос задан 19.01.2019 в 09:35. Предмет Математика. Спрашивает Сорокина Рина.

На загадочном калькуляторе есть волшебная кнопка, при нажатии которой к числу на экране

прибавляется его сумма цифр.Сначала на экране было число 41, а затем много раз нажимали волшебную кнопку .Могли ли при этом в какой-то момент на экране появиться число 3333?Запишите решение и ответ. Прошу помогите с объяснением .Срочно.Прошу .Заранее спасибо))
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кузнецов Илья.
Ответ ответ ответ ответ ответ
0 0
Отвечает Raud Angelina.
Признак делимости на 3: остаток от деления любого натурального числа на 3 равен остатку от деления на 3 суммы его цифр.

Если число имеет остаток 1 от деления на 3, то сумма цифр тоже имеет остааток 1 и сложение числа с суммой цифр дает остаток от деления на 3: 1+1=2.
Если число имеет остаток 2 от деления на 3, то сумма цифр тоже имеет остаток 2 и сложение числа с суммой цифр дает остаток 1, т.к. (2+2)/3 имеет остаток 1.
Таким образом, мы вернулись к предыдущему пункту и так будем ходить по кругу вечно.
41 нацело не делится на 3. Следовательно, мы никогда не не получим число, которое будет делиться без остатка на 3.

Значит, 3333 никогда не появится.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос