
Вопрос задан 15.01.2019 в 08:12.
Предмет Математика.
Спрашивает Белая София.
Клиент А. сделал вклад в банке в размере 6200 рублей. Проценты по вкладу начисляются раз в год и
прибавляются к текущей сумме вклада. Ровно через год на тех же условиях такой же вклад в том же банке сделал Б. Еще ровно через год клиенты А. и Б. закрыли вклады и забрали все накопившиеся деньги. При этом клиент А. получил на 682 рубля больше клиенты Б. Какой процент годовых начислял банк по этим вкладам?

Ответы на вопрос

Отвечает Василенко Анна.
Вспомним, как увеличить число А на p процентов. 1% – это одна сотая часть числа. Сначала найдем p процентов от числа А, для этого нужно число А умножить на p/100, получим p/100*A .
Чтобы увеличить число А на p процентов, нужно к числу А прибавить p/100*A.
В результате получим:
A+p/100*A=A*(1+p/100)
То есть при увеличении числа А на p процентов мы получаем число : A*(1+p/100)
Если мы число А увеличиваем на p процентов два раза, то мы получаем число A*(1+p/100)^2 (Мы умножаем на скобку (1+p/100) два раза)
Итак, что произошло с нашими клиентами. Клиент А. сделал вклад 6200 рублей, и снял его через 2 года. Пусть банк начисляет x процентов годовых.
Тогда через 2 года клиент А. снял 6200*(1+x/100)^2 рублей.
Клиент Б. долго думал, и положил деньги в банк на год позже.
Поэтому деньги в банке находились всего год и он снял 6200*(1+x/100) рублей.
Клиент А. снял на 682 рубля больше, чем клиент Б.
Получим уравнение:
6200*(1+x/100)^2-6200*(1+x/100)=682
Чтобы решить уравнение, введем замену: t=(1+x/100)
Получим квадратное уравнение относительно t:
6200t^2-6200t-682=0
Попробуем сократить коэффициенты:
6200/682=3100/341=100/11
Итак, 6200 и 682 делятся на 62.
Разделим обе части уравнения на 62.
100t^2-100t-11=0
D/4= 2500+1100=3600 (60)
t1=50+60/100=1,1
t2=50-60/100<0 => не подходит по смыслу задачи.
Вернемся к исходной переменной:
1+x/100=1,1
x/100=0,1
x=10
Ответ: 10%
Чтобы увеличить число А на p процентов, нужно к числу А прибавить p/100*A.
В результате получим:
A+p/100*A=A*(1+p/100)
То есть при увеличении числа А на p процентов мы получаем число : A*(1+p/100)
Если мы число А увеличиваем на p процентов два раза, то мы получаем число A*(1+p/100)^2 (Мы умножаем на скобку (1+p/100) два раза)
Итак, что произошло с нашими клиентами. Клиент А. сделал вклад 6200 рублей, и снял его через 2 года. Пусть банк начисляет x процентов годовых.
Тогда через 2 года клиент А. снял 6200*(1+x/100)^2 рублей.
Клиент Б. долго думал, и положил деньги в банк на год позже.
Поэтому деньги в банке находились всего год и он снял 6200*(1+x/100) рублей.
Клиент А. снял на 682 рубля больше, чем клиент Б.
Получим уравнение:
6200*(1+x/100)^2-6200*(1+x/100)=682
Чтобы решить уравнение, введем замену: t=(1+x/100)
Получим квадратное уравнение относительно t:
6200t^2-6200t-682=0
Попробуем сократить коэффициенты:
6200/682=3100/341=100/11
Итак, 6200 и 682 делятся на 62.
Разделим обе части уравнения на 62.
100t^2-100t-11=0
D/4= 2500+1100=3600 (60)
t1=50+60/100=1,1
t2=50-60/100<0 => не подходит по смыслу задачи.
Вернемся к исходной переменной:
1+x/100=1,1
x/100=0,1
x=10
Ответ: 10%


Топ вопросов за вчера в категории Математика

Математика 12

Математика 60

Математика 771

Математика 65

Математика 23
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili