
Вопрос задан 14.01.2019 в 07:30.
Предмет Математика.
Спрашивает Алиева Мадина.
Из пункта А в пункт В ехали автомобиль и поезд .Автомобиль проехал этот путь за 2 часа, а поезд за
5часов. Какова их скорость Если скорость поезда на 48км/ч меньше ?

Ответы на вопрос

Отвечает Гетто Екатерина.
№ 1. Двое рабочих выполняют некоторую работу. После 45 минут совместной работы первый рабочий был переведен на другую работу, и второй рабочий закончил оставшуюся часть работы за 2 часа 15 минут. За какое время мог бы выполнить работу каждый рабочий в отдельности, если известно, что второму для этого понадобится на 1 час больше, чем первому.
Решение:
Пусть первый рабочий выполнит всю работу за х часов, а второй всю работу - за y часов. По условию х=у–1, это уравнение (1).
Пусть объем всей работы равен 1. Тогда 1/х – производительность труда первого рабочего (количество работы, выполненной за 1 час), 1/у – производительность труда второго рабочего.
Так как они работали 45 мин.= 3/4 часа совместно, то (3/4)(1/x + 1/y) – объем работы, выполненной рабочими за 45 минут.
Так как второй рабочий работал один 2 часа 15 минут = 2¼ часа = 9/4 часа, то (9/4)*(1/y) – объем работы, выполненной вторым рабочим за 2 часа 15 минут.
По условию 3/4 *(1/x + 1/y) +9/(4y) = 1 это уравнение (2).
Таким образом, мы получили систему двух уравнений: (1) и (2).
Решим ее, для этого выражение для х из уравнения (1) подставим в (2)
и упростим. Получим 3(2y - 1) +9(y - 1) = 4y(y-1) --> 4у2–19у+12=0;
y1=3/4 часа и у2=4 ч.
Из двух значений для у выберем то, которое подходит по смыслу задачи у1=45 мин., но 45 мин. рабочие работали вместе, а потом второй рабочий работал еще отдельно, поэтому y1 = 3/4 не подходит по смыслу задачи. Для полученного у2=4 найдем из первого уравнения первоначальной системы значение х
х=4–1; х=3 ч.
Ответ: первый рабочий выполнит работу за 3 часа, второй – за 4 часа.
Решение:
Пусть первый рабочий выполнит всю работу за х часов, а второй всю работу - за y часов. По условию х=у–1, это уравнение (1).
Пусть объем всей работы равен 1. Тогда 1/х – производительность труда первого рабочего (количество работы, выполненной за 1 час), 1/у – производительность труда второго рабочего.
Так как они работали 45 мин.= 3/4 часа совместно, то (3/4)(1/x + 1/y) – объем работы, выполненной рабочими за 45 минут.
Так как второй рабочий работал один 2 часа 15 минут = 2¼ часа = 9/4 часа, то (9/4)*(1/y) – объем работы, выполненной вторым рабочим за 2 часа 15 минут.
По условию 3/4 *(1/x + 1/y) +9/(4y) = 1 это уравнение (2).
Таким образом, мы получили систему двух уравнений: (1) и (2).
Решим ее, для этого выражение для х из уравнения (1) подставим в (2)
и упростим. Получим 3(2y - 1) +9(y - 1) = 4y(y-1) --> 4у2–19у+12=0;
y1=3/4 часа и у2=4 ч.
Из двух значений для у выберем то, которое подходит по смыслу задачи у1=45 мин., но 45 мин. рабочие работали вместе, а потом второй рабочий работал еще отдельно, поэтому y1 = 3/4 не подходит по смыслу задачи. Для полученного у2=4 найдем из первого уравнения первоначальной системы значение х
х=4–1; х=3 ч.
Ответ: первый рабочий выполнит работу за 3 часа, второй – за 4 часа.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili