Вопрос задан 06.01.2019 в 23:29. Предмет Математика. Спрашивает Козак Вова.

На доске написано число. Олег играет в арифметическую игру: он может либо стереть последнюю цифру

написанного числа, либо прибавить к написанному числу число 2018 и записать полученный результат, стерев предыдущее число. Может ли Олег, действуя таким образом, в конце концов получить число 1? Если да, покажмте как: если нет, объясните почему.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Хажеева Алина.

Надо рассмотреть варианты, когда число начинается с 1, и когда оно начинается с др. цифр.

Пусть первая цифра в задуманном числе 1ххххх - в этом случае, мы будет просто все время стирать одну последнюю цифру, пока в итоге не останется цифра 1.Пусть первая цифра не 1, а любая другая (2хххх, 3хххх, 4хххх и т.д). Мы можем, последовательно стирая по одной цифре сзади числа в конце концов получить: 2,3,4 и т.д одну цифру.

Теперь надо к этой цифре прибавить 5 раз подряд число 2018, то есть в общем мы прибавим число 10090. Очевидно, что какую цифру далее мы бы не прибавили 2,3,4,5 и т.д число все равно будет начинаться с 1. А далее мы просто повторим пункт 1. То есть будем стирать последнюю цифру, пока не получим 1. Что и требовалось доказать.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос