
Вопрос задан 28.12.2018 в 19:03.
Предмет Математика.
Спрашивает Моляка Арина.
при каком значение p в разложении на множители многочлена x^2+px-10 содержится множитель (x-2)


Ответы на вопрос

Отвечает Гнатишин Юля.
Попробуй такой метод:
представь многочлен
x^2+px-10 как
произведение (х-2)(х+у), получается
х^2+px-10=(х-2)(х+у)
х^2+px-10=х^2+ху-2х-2у
как мы видим, свободные члены равны
-10=-2у, откуда следует у=5, подставляем
х^2+px-10=х^2+5х-2х-10
х^2+px-10=х^2+3х-10
отсюда следует, что р=3
ОТВЕТ: р=3
представь многочлен
x^2+px-10 как
произведение (х-2)(х+у), получается
х^2+px-10=(х-2)(х+у)
х^2+px-10=х^2+ху-2х-2у
как мы видим, свободные члены равны
-10=-2у, откуда следует у=5, подставляем
х^2+px-10=х^2+5х-2х-10
х^2+px-10=х^2+3х-10
отсюда следует, что р=3
ОТВЕТ: р=3


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili