
В квартире 8 электролампочек. Вероятность работы лампочки в течение года равна 0,9. Какова
вероятность того, что в течение года придется заменить не менее половины лампочек.?

Ответы на вопрос

100%-90%=10%=0,1 шанс того, что лампочка сломана
0,1*8=0,8=80%



Calculation of the Probability
To calculate the probability of having to replace at least half of the light bulbs within a year, we can use the binomial distribution formula. The binomial distribution is used to calculate the probability of a certain number of successes in a fixed number of independent Bernoulli trials.
In this case, each light bulb has a probability of 0.9 of working throughout the year, and we have 8 light bulbs in total. We want to find the probability of having to replace at least 4 light bulbs (half of 8).
The formula for the binomial distribution is:
P(X = k) = C(n, k) * p^k * (1-p)^(n-k)
Where: - P(X = k) is the probability of having exactly k successes - C(n, k) is the number of combinations of n items taken k at a time - p is the probability of success in a single trial - n is the total number of trials
In this case, k is the number of light bulbs that need to be replaced (4 or more), p is 0.9, and n is 8.
Let's calculate the probability using this formula.
Calculation
To calculate the probability, we need to sum the probabilities of having 4, 5, 6, 7, or 8 light bulbs that need to be replaced.
P(X >= 4) = P(X = 4) + P(X = 5) + P(X = 6) + P(X = 7) + P(X = 8)
Using the binomial distribution formula, we can calculate each term:
P(X = 4) = C(8, 4) * (0.9)^4 * (1-0.9)^(8-4) P(X = 5) = C(8, 5) * (0.9)^5 * (1-0.9)^(8-5) P(X = 6) = C(8, 6) * (0.9)^6 * (1-0.9)^(8-6) P(X = 7) = C(8, 7) * (0.9)^7 * (1-0.9)^(8-7) P(X = 8) = C(8, 8) * (0.9)^8 * (1-0.9)^(8-8)
Let's calculate each term and sum them up to find the probability.
Calculation Steps
P(X = 4) = C(8, 4) * (0.9)^4 * (1-0.9)^(8-4) P(X = 4) = 70 * (0.9)^4 * (0.1)^4 P(X = 4) = 0.2835
P(X = 5) = C(8, 5) * (0.9)^5 * (1-0.9)^(8-5) P(X = 5) = 56 * (0.9)^5 * (0.1)^3 P(X = 5) = 0.3114
P(X = 6) = C(8, 6) * (0.9)^6 * (1-0.9)^(8-6) P(X = 6) = 28 * (0.9)^6 * (0.1)^2 P(X = 6) = 0.1866
P(X = 7) = C(8, 7) * (0.9)^7 * (1-0.9)^(8-7) P(X = 7) = 8 * (0.9)^7 * (0.1)^1 P(X = 7) = 0.0576
P(X = 8) = C(8, 8) * (0.9)^8 * (1-0.9)^(8-8) P(X = 8) = 1 * (0.9)^8 * (0.1)^0 P(X = 8) = 0.4305
P(X >= 4) = P(X = 4) + P(X = 5) + P(X = 6) + P(X = 7) + P(X = 8) P(X >= 4) = 0.2835 + 0.3114 + 0.1866 + 0.0576 + 0.4305 P(X >= 4) = 1.2696
Therefore, the probability of having to replace at least half of the light bulbs within a year is approximately 1.2696.
Please note that the probabilities have been rounded for simplicity.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili