Вопрос задан 01.10.2018 в 20:53. Предмет Математика. Спрашивает Гаевская Анастасия.

У Андрея было 36 евро.На книгу сказок он потратил четвёртую часть денег. На остаток денег он купил

спортивную энциклопедию.Во сколько раз книга сказок дешевле,чем энциклопедия? 2)В кошельке у Рудольфа несколько монет по 50 центов,20 центов и 10 центов.Он купил книгу за 2 евро. За покупку заплатил 9 монетами.Сколькими монетами каждого достоинства Рудольф заплатил за покупку? (Возможны два правильных варианта).
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Шевцова Анастасия.
1)36/4=9(потратил на книгу)
36-9=27(потратил на энциклопедию)
27/9=3
Ответ:В 3 раза энциклопедия дороже чем книга.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem 1: Андрей's Expenses

Андрей had 36 euros. He spent one-fourth of the money on a book of fairy tales and used the remaining money to buy a sports encyclopedia. We need to find out how many times cheaper the book of fairy tales is compared to the encyclopedia.

To solve this problem, we can follow these steps:

1. Calculate the amount of money Андрей spent on the book of fairy tales. 2. Calculate the amount of money Андрей spent on the encyclopedia. 3. Find the ratio of the cost of the book of fairy tales to the cost of the encyclopedia.

Let's calculate the answers step by step.

Step 1: Calculate the amount of money Андрей spent on the book of fairy tales. - Андрей spent one-fourth of his money on the book of fairy tales. - One-fourth of 36 euros is 36/4 = 9 euros.

Step 2: Calculate the amount of money Андрей spent on the encyclopedia. - Андрей used the remaining money to buy the encyclopedia. - The remaining money is 36 euros - 9 euros = 27 euros.

Step 3: Find the ratio of the cost of the book of fairy tales to the cost of the encyclopedia. - The cost of the book of fairy tales is 9 euros. - The cost of the encyclopedia is 27 euros. - The ratio of the cost of the book of fairy tales to the cost of the encyclopedia is 9/27 = 1/3.

Therefore, the book of fairy tales is three times cheaper than the encyclopedia.

Problem 2: Рудольф's Coin Purchase

Рудольф had several coins of different denominations: 50 cents, 20 cents, and 10 cents. He bought a book for 2 euros and paid for the purchase using 9 coins. We need to find out how many coins of each denomination Рудольф used to pay for the purchase.

To solve this problem, we can follow these steps:

1. Set up equations based on the given information. 2. Solve the equations to find the values of the variables.

Let's calculate the answers step by step.

Step 1: Set up equations based on the given information. - Let's assume Рудольф used x coins of 50 cents, y coins of 20 cents, and z coins of 10 cents. - The total value of the coins used is 50x + 20y + 10z cents. - The total value of the coins used is equal to 2 euros, which is 200 cents. - We also know that Рудольф used a total of 9 coins.

We can set up the following equations: - 50x + 20y + 10z = 200 (equation 1) - x + y + z = 9 (equation 2)

Step 2: Solve the equations to find the values of the variables. - We can solve the equations using various methods such as substitution or elimination. - Let's solve the equations using the substitution method.

From equation 2, we can express x in terms of y and z: - x = 9 - y - z

Substituting this value of x into equation 1, we get: - 50(9 - y - z) + 20y + 10z = 200 - 450 - 50y - 50z + 20y + 10z = 200 - -30y - 40z = -250 - 3y + 4z = 25 (equation 3)

Now we have two equations: - x + y + z = 9 (equation 2) - 3y + 4z = 25 (equation 3)

We can solve these equations to find the values of y and z.

Using equation 2, we can express x in terms of y and z: - x = 9 - y - z

Now we have the values of x, y, and z: - x = 9 - y - z - y = 3 - z = 4

Therefore, Рудольф used 3 coins of 50 cents, 3 coins of 20 cents, and 4 coins of 10 cents to pay for the purchase.

Note: There may be multiple correct solutions to this problem, but the given solution is one of the possible solutions.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос