
Интеграл 3x^2dx/(2-x^3)^4 Посчитать Методом замены переменной


Ответы на вопрос





Calculation of the Integral
To calculate the integral ∫(3x^2dx)/(2-x^3)^4 using the method of variable substitution, we can follow these steps:
1. Let's start by making a substitution: u = 2 - x^3. This will help simplify the integral.
2. Next, we need to find the derivative of u with respect to x. Taking the derivative of both sides of the equation u = 2 - x^3, we get du/dx = -3x^2.
3. Now, we can express dx in terms of du using the derivative we just found: dx = du/(-3x^2).
4. Substituting the values of u and dx in the integral, we have:
∫(3x^2dx)/(2-x^3)^4 = ∫(3x^2)(du/(-3x^2))/(2-x^3)^4 Simplifying, we get: ∫(-du)/(2-x^3)^4
5. The integral now becomes: ∫(-du)/(2-u)^4.
6. To solve this integral, we can use the power rule for integration. The integral of (-du)/(2-u)^4 is equal to (1/3)(2-u)^-3 + C, where C is the constant of integration.
7. Finally, substituting back u = 2 - x^3, we get the final result:
∫(3x^2dx)/(2-x^3)^4 = (1/3)(2 - (2 - x^3))^-3 + C Simplifying further, we have: (1/3)(x^3 - 2)^-3 + C.
Therefore, the integral of (3x^2dx)/(2-x^3)^4, using the method of variable substitution, is (1/3)(x^3 - 2)^-3 + C.
Please note that this is a general solution, and if you have specific limits of integration, you can substitute those values to find the definite integral.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili