Вопрос задан 07.08.2018 в 06:02. Предмет Математика. Спрашивает Бядретдинова Женя.

Две стороны прямоугольника abcd равны 32 и 24 найдите длинну суммы векторов ab и ad

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Макарова Аюна.
___  __   ___
AB+AD=AC
по теореме пифагора
AC=√(AB²+AD²)=√(24²+32²)=√(576+1024)=√1600=40

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи нам понадобится использовать геометрические свойства прямоугольника. Для начала, давайте визуализируем прямоугольник ABCD:

``` A ------------ B | | | | | | D ------------ C ```

У нас есть следующая информация: - Длина стороны AB равна 32 единицам. - Длина стороны AD равна 24 единицам.

Нахождение векторов AB и AD

Чтобы найти вектор AB, нужно вычесть координаты точки A из координат точки B. Аналогично, чтобы найти вектор AD, нужно вычесть координаты точки A из координат точки D.

Пусть координаты точки A будут (x1, y1), координаты точки B будут (x2, y2), а координаты точки D будут (x4, y4).

Тогда вектор AB будет равен (x2 - x1, y2 - y1), а вектор AD будет равен (x4 - x1, y4 - y1).

Нахождение вектора AB

Для начала, нам понадобится найти координаты точек A и B. Мы знаем, что длина стороны AB равна 32, так что мы можем записать следующее уравнение:

AB = (x2 - x1, y2 - y1) = (32, 0)

Поскольку длина стороны AB равна 32, это означает, что x-координата точки B должна быть на 32 больше, чем x-координата точки A. В то же время, y-координата точки B должна быть равна y-координате точки A.

Используя эти свойства, мы можем записать следующие уравнения:

x2 - x1 = 32 y2 - y1 = 0

Нахождение вектора AD

Аналогично, нам нужно найти координаты точек A и D. Мы знаем, что длина стороны AD равна 24, поэтому мы можем записать следующее уравнение:

AD = (x4 - x1, y4 - y1) = (0, 24)

Это означает, что x-координата точки D должна быть равна x-координате точки A, а y-координата точки D должна быть на 24 больше, чем y-координата точки A.

Используя эти свойства, мы можем записать следующие уравнения:

x4 - x1 = 0 y4 - y1 = 24

Решение системы уравнений

Теперь у нас есть система из четырех уравнений:

x2 - x1 = 32 y2 - y1 = 0 x4 - x1 = 0 y4 - y1 = 24

Мы можем решить эту систему уравнений, подставив значения одних переменных в другие уравнения. Подставляя значения, получаем:

x2 - x1 = 32 y2 - y1 = 0 x2 - 32 = 0 y2 - y1 = 24

Из третьего уравнения, мы находим x2 = 32 + x1.

Подставляя это значение в четвертое уравнение, получаем:

(32 + x1) - 32 = 0 y2 - y1 = 24

Из первого уравнения, мы находим y2 = y1.

Подставляя это значение во второе уравнение, получаем:

(32 + x1) - x1 = 24 32 = 24

Это уравнение является противоречием, что означает, что система уравнений не имеет решений.

Вывод

Таким образом, невозможно найти вектор суммы AB + AD, так как система уравнений не имеет решений. Возможно, в условии задачи допущена ошибка или пропущены некоторые детали, которые могли бы помочь в решении. Если у вас есть дополнительная информация, пожалуйста, предоставьте ее, и я постараюсь помочь вам дальше.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос