Вопрос задан 08.12.2023 в 20:42. Предмет Математика. Спрашивает Чугункова Александра.

Скільки можна скласти різних чотирицифрових , у запису яких є тільки непарні цифри (ціфри можуть

повторюватися) Подробная информация 
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Козлов Данил.
Непарные 1 3 5 7 9 всего их 5...выбора каждого числа можно использовать все 5...так как всего четерехзначное число то 5*4=20
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для розв'язання цього завдання потрібно врахувати, що в запису чотирицифрового числа можуть бути тільки непарні цифри, і цифри можуть повторюватися.

Щоб знайти кількість різних чотирицифрових чисел, у яких є тільки непарні цифри, можна розглянути кожну позицію числа окремо.

Перша позиція:

У першій позиції можуть бути тільки непарні цифри, тобто 1, 3, 5, 7 або 9. Оскільки цифри можуть повторюватися, то у першій позиції може бути будь-яка з цих цифр. Тому, кількість варіантів для першої позиції дорівнює 5.

Друга позиція:

У другій позиції також можуть бути тільки непарні цифри. Оскільки цифри можуть повторюватися, то у другій позиції також може бути будь-яка з цих цифр. Тому, кількість варіантів для другої позиції також дорівнює 5.

Третя позиція:

Аналогічно до перших двох позицій, у третій позиції можуть бути тільки непарні цифри, і цифри можуть повторюватися. Тому, кількість варіантів для третьої позиції також дорівнює 5.

Четверта позиція:

У четвертій позиції також можуть бути тільки непарні цифри, і цифри можуть повторюватися. Тому, кількість варіантів для четвертої позиції також дорівнює 5.

Загальна кількість варіантів:

Оскільки кожна позиція може мати 5 різних варіантів, загальна кількість різних чотирицифрових чисел, у яких є тільки непарні цифри, дорівнює добутку кількості варіантів для кожної позиції. Тому, загальна кількість різних чотирицифрових чисел дорівнює 5 * 5 * 5 * 5 = 625.

Отже, можна скласти 625 різних чотирицифрових чисел, у запису яких є тільки непарні цифри.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос