Вопрос задан 30.11.2023 в 02:12. Предмет Математика. Спрашивает Бойко Ксения.

Решите плиз. В трех бидонах 270 литров молока в первом бидоне в 3 раза больше литров чем в третьем

а во втором на 20 литров больше чем в третьем . Сколько литров молока в каждом бидоне? Даю 40 баллов
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Орлов Алексей.

Ответ:

Пошаговое объяснение:1) 4,5:3=1,5 (л) - молока во втором бидоне.2) 1,5:2=0,75 (л) - молока в третьем бидоне.3) 4,5+1,5+0,75=6,75 (л) - молока всего в трех бидонах.Ответ: Во втором бидоне 1,5л молока, в третьем 0,75л. Всего молока 6,75л.

0 0
Отвечает Кузнецова Вероника.

Ответ:

  1. 40-20=20
  2. 270:3=90
  3. 90-20=70
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given three containers of milk, and we need to determine the amount of milk in each container. The first container has three times the amount of milk as the third container, and the second container has 20 liters more than the third container.

Solution

Let's assume the amount of milk in the third container is x liters.

According to the given information: - The first container has three times the amount of milk as the third container, so the first container has 3x liters of milk. - The second container has 20 liters more than the third container, so the second container has x + 20 liters of milk.

We know that the total amount of milk in all three containers is 270 liters. Therefore, we can write the equation:

x + 3x + (x + 20) = 270

Simplifying the equation: 5x + 20 = 270

Subtracting 20 from both sides: 5x = 250

Dividing both sides by 5: x = 50

So, the third container has 50 liters of milk.

Using this information, we can find the amount of milk in the other two containers: - The first container has three times the amount of milk as the third container, so it has 3 * 50 = 150 liters of milk. - The second container has 20 liters more than the third container, so it has 50 + 20 = 70 liters of milk.

Therefore, the amount of milk in each container is as follows: - First container: 150 liters - Second container: 70 liters - Third container: 50 liters

I hope this helps! Let me know if you have any further questions.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given three containers of milk, with the following information: - The first container has three times the amount of milk as the third container. - The second container has 20 liters more milk than the third container. - The total amount of milk in the three containers is 270 liters.

We need to find the amount of milk in each container.

Solution

Let's assume the amount of milk in the third container is x liters.

According to the given information: - The first container has three times the amount of milk as the third container, so it has 3x liters. - The second container has 20 liters more milk than the third container, so it has x + 20 liters.

The total amount of milk in the three containers is 270 liters, so we can write the equation:

x + 3x + (x + 20) = 270

Simplifying the equation: 5x + 20 = 270

Subtracting 20 from both sides: 5x = 250

Dividing both sides by 5: x = 50

Now we can find the amount of milk in each container: - The first container has 3x = 3 * 50 = 150 liters of milk. - The second container has x + 20 = 50 + 20 = 70 liters of milk. - The third container has x = 50 liters of milk.

Therefore, the amount of milk in each container is: - First container: 150 liters - Second container: 70 liters - Third container: 50 liters

I hope this helps! Let me know if you have any further questions.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос