Вопрос задан 19.11.2023 в 10:55. Предмет Математика. Спрашивает Клинк Мария.

При якому значенні х нерівність 7200: х < 720 буде істинною? А) х = 100; Б) х = 1000; В) х = 10;

Г) інша відповідь. 4. Задача. Дмитро проїхав на велосипеді 16 км, що становить 2/4 усього шляху. Чому дорівнює довжина усього шляху, що проїхав Дмитро? 6. Розв'язати рівняння: ( показуємо всі обчислення) 12,5:х=0,625 х: 5,69=0,12 плиз ​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Любчак Ася.

                                                   1 Завдання

А

                                                     Задача

16:2*4=32(км) - довжина усього шляху

                                                    Рівняння

12,5:x=0,625                                                               x:5,69=0,12

x=12,5:0,625(125000:625)                                       x=5,69*0,12

x= 200                                                                          x= 0,6828 (Не знаю чи                  

                                                                                      правильне)                                                                                                                                    

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

1. Нерівність 7200 : x < 720

Щоб знайти значення x, при якому нерівність буде істинною, давайте розглянемо варіанти:

А) x = 100: Розглянемо нерівність: 7200 / 100 < 720

Результат: 72 < 720 - істинно.

Б) x = 1000: Розглянемо нерівність: 7200 / 1000 < 720

Результат: 7.2 < 720 - істинно.

В) x = 10: Розглянемо нерівність: 7200 / 10 < 720

Результат: 720 < 720 - хибно.

Таким чином, правильні варіанти: А) x = 100 та Б) x = 1000.

2. Довжина всього шляху, що проїхав Дмитро:

Давайте позначимо довжину всього шляху як D. За умовою задачі, Дмитро проїхав 2/4 цього шляху, тобто:

\(16 \, \text{км} = \frac{2}{4} \cdot D\)

Розв'яжемо рівняння для D:

\(\frac{2}{4} \cdot D = 16\)

\(D = 16 \cdot \frac{4}{2} = 32\)

Таким чином, довжина всього шляху, що проїхав Дмитро, дорівнює 32 км.

3. Рішення рівняння \(12,5 \cdot x = 0,625 \cdot x + 5,69\):

Почнемо зі скорочення обидвих сторін на 0,625:

\(12,5 \cdot x = x + \frac{5,69}{0,625}\)

Знайдемо суму у знаменнику:

\(12,5 \cdot x = x + 9,104\)

Віднімемо x з обох сторін:

\(11,5 \cdot x = 9,104\)

Знайдемо x:

\(x = \frac{9,104}{11,5} \approx 0,791\)

Таким чином, рішення рівняння \(12,5 \cdot x = 0,625 \cdot x + 5,69\) є \(x \approx 0,791\).

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос