Вопрос задан 10.11.2023 в 16:46. Предмет Математика. Спрашивает Миронов Сергей.

7) Josephine bought 8 packets of biscuits. Each packet had a mass of 500 g. She repacked them

into 3 boxes. The first box was twice as heavy as the second box. The third box was 60 g heavier than the second box. What was the mass of the second box?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Марков Никита.
Josephine bought 8 packets of biscuits and each packet had a mass of 500 g
So total mass of the biscuit is 8×500 = 4000 g
Let's assume the amount of biscuit in the second box is x
The first box was twice as heavy as the second box so, the amount of biscuit in the first box will be 2x
The third box was 60 g heavier than the second box, so the amount of biscuit in the third box will be x+60
Total amount of biscuits = 2x+x+x+60 = 4x+60
Then,
4x+60=4000
4x=3940
x=985


Therefore, mass of the second box is 985 g.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Let's break down the information given:

1. Josephine bought 8 packets of biscuits. 2. Each packet had a mass of 500 g. 3. She repacked them into 3 boxes. 4. The first box was twice as heavy as the second box. 5. The third box was 60 g heavier than the second box.

Let's denote the mass of the second box as \(x\) grams.

Now, the first box is twice as heavy as the second box, so the mass of the first box is \(2x\).

The third box is 60 g heavier than the second box, so the mass of the third box is \(x + 60\).

Now, let's find the total mass of the biscuits before repacking. Josephine bought 8 packets, and each packet had a mass of 500 g, so the total mass is \(8 \times 500\).

She repacked them into three boxes, so the total mass is distributed among these boxes.

Therefore, we can set up an equation:

\[ 8 \times 500 = 2x + x + (x + 60) \]

Now, solve for \(x\):

\[ 4000 = 4x + 60 \]

Subtract 60 from both sides:

\[ 3940 = 4x \]

Divide by 4:

\[ x = 985 \]

So, the mass of the second box is 985 grams.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос