
Пожалуйста помогите решить задачу!!! 4 класс Перед домом Алисы распустились необычные цветы:
зелёные тюльпаны, синие ромашки и жёлтые колокольчики. Тюльпанов и ромашек Алиса насчитала 79, ромашек и колокольчиков - 81, а тюльпанов и колокольчиков - 76. Сколько цветов каждого вида распустилось перед домом Алисы?

Ответы на вопрос

118-76=42-синих ромашек.
118-81=37-зеленых тюльпанов.
118-79=39-желтых колокольчиков.



Problem Analysis
To solve this problem, we need to determine the number of each type of flower that bloomed in front of Alice's house. We are given the following information: - The total number of tulips and daisies is 79. - The total number of daisies and bells is 81. - The total number of tulips and bells is 76.Let's use algebraic equations to represent this information and solve for the number of each type of flower.
Solution
Let's assume the number of tulips is represented by t, the number of daisies is represented by d, and the number of bells is represented by b.From the given information, we can create the following equations:
1. The total number of tulips and daisies is 79: t + d = 79. 2. The total number of daisies and bells is 81: d + b = 81. 3. The total number of tulips and bells is 76: t + b = 76.
We now have a system of three equations with three unknowns. We can solve this system of equations to find the values of t, d, and b.
To solve the system of equations, we can use the method of substitution or elimination. Let's use the method of substitution:
From equation 1, we can express t in terms of d: t = 79 - d.
Substituting this value of t into equations 2 and 3, we get:
79 - d + b = 76 (equation 2) d + b = 81 (equation 3)
Simplifying equation 2, we have: b - d = -3.
Now, we can solve equations 2 and 3 as a system of linear equations:
b - d = -3 (equation 4) d + b = 81 (equation 5)
Adding equations 4 and 5, we get: 2b = 78.
Solving for b, we find that b = 39.
Substituting this value of b into equation 5, we have: d + 39 = 81.
Solving for d, we find that d = 42.
Finally, substituting the values of d and b into equation 1, we have: t + 42 = 79.
Solving for t, we find that t = 37.
Therefore, the number of each type of flower that bloomed in front of Alice's house is: - 37 tulips - 42 daisies - 39 bells
Answer
The number of each type of flower that bloomed in front of Alice's house is 37 tulips, 42 daisies, and 39 bells.

Топ вопросов за вчера в категории Математика





Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili