
Sin2pix/3=0 PLEASEEEEEEEEEEEEEE


Ответы на вопрос




To solve the equation sin(2πx/3) = 0, we need to find the values of x that satisfy this equation.
The equation sin(2πx/3) = 0 means that the sine of the angle (2πx/3) is equal to zero. In other words, we are looking for the values of x for which the angle (2πx/3) has a sine of zero.
The sine function is zero at certain angles, such as 0, π, 2π, etc. These angles are multiples of π. So, we can write the equation as:
2πx/3 = nπ,
where n is an integer.
To find the values of x, we can solve for x in terms of n:
x = (3nπ)/(2π),
Simplifying the expression, we get:
x = (3n)/2.
Therefore, the values of x that satisfy the equation sin(2πx/3) = 0 are given by x = (3n)/2, where n is an integer.
For example, if n = 0, then x = 0. If n = 1, then x = 3/2. If n = -1, then x = -3/2, and so on.
I hope this helps! Let me know if you have any further questions.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili