Вопрос задан 03.11.2023 в 12:38. Предмет Математика. Спрашивает Музаев Рамиль.

2 Отчет наверное. Из двух деревень с одинаковой скоростью вышли два всадника в противоположных

направлениях. Один вышел за 2 часа до другого и проехал более 36 км пути. Если до встречи второго всадника было 6 часов, то какое расстояние между селами?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Копылова Алёна.

Ответ:

1. 36:2 = (18 км/ч) - скорость всадников.

2. 18+18 = 36 к(м/ч) - скорость сближения

3. 36:6+36 = 216+36 = 252 (км) - расстояние между сёлами.

Пошаговое объяснение:

Надеюсь помогла)))

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We have two riders who start from two villages at the same time, but in opposite directions. One rider starts 2 hours before the other and travels more than 36 km before they meet. If the meeting occurs 6 hours after the second rider starts, we need to find the distance between the villages.

Solution

Let's break down the problem step by step:

1. Let's assume the speed of the first rider is v1 km/h and the speed of the second rider is v2 km/h. 2. The first rider starts 2 hours before the second rider, so the time traveled by the first rider before they meet is t1 = t2 + 2 hours. 3. The distance traveled by the first rider before they meet is more than 36 km, so we have the inequality d1 > 36 km. 4. The meeting occurs 6 hours after the second rider starts, so the total time traveled by the second rider is t2 + 6 hours. 5. The distance traveled by the second rider is d2 km. 6. We need to find the distance between the villages, which is d = d1 + d2 km.

To solve this problem, we need to find the relationship between the variables and use the given information to form equations.

Calculation

Let's calculate the values step by step:

1. We know that distance = speed × time. So, the distance traveled by the first rider is d1 = v1 × t1 km. 2. The distance traveled by the second rider is d2 = v2 × (t2 + 6) km. 3. We also know that d1 > 36 km. 4. The total distance between the villages is d = d1 + d2 km.

Now, let's substitute the values and solve the equations.

Solution Steps

1. We know that d1 = v1 × t1 km and d2 = v2 × (t2 + 6) km. 2. We also know that d1 > 36 km. 3. The total distance between the villages is d = d1 + d2 km.

Let's solve the equations step by step:

1. Substitute d1 = v1 × t1 and d2 = v2 × (t2 + 6) into d = d1 + d2: d = v1 × t1 + v2 × (t2 + 6) km.

2. Substitute t1 = t2 + 2 into the equation: d = v1 × (t2 + 2) + v2 × (t2 + 6) km.

3. Simplify the equation: d = v1 × t2 + 2v1 + v2 × t2 + 6v2 km.

4. Rearrange the equation: d = (v1 + v2) × t2 + (2v1 + 6v2) km.

5. Since the riders start at the same time, the total time traveled by the second rider is t2 + 6 hours. So, we have t2 + 6 = d2 / v2.

6. Substitute t2 + 6 = d2 / v2 into the equation: d = (v1 + v2) × (d2 / v2) + (2v1 + 6v2) km.

7. Simplify the equation: d = d2 × (v1 + v2) / v2 + (2v1 + 6v2) km.

8. We also know that d1 > 36 km. Substitute d1 = v1 × t1 into the inequality: v1 × t1 > 36 km.

9. Substitute t1 = t2 + 2 into the inequality: v1 × (t2 + 2) > 36 km.

10. Simplify the inequality: v1 × t2 + 2v1 > 36 km.

11. Rearrange the inequality: v1 × t2 > 36 - 2v1 km.

12. Since the riders start at the same time, the total time traveled by the second rider is t2 + 6 hours. So, we have t2 + 6 = d2 / v2.

13. Substitute t2 + 6 = d2 / v2 into the inequality: v1 × (d2 / v2) > 36 - 2v1 km.

14. Simplify the inequality: d2 × v1 / v2 > 36 - 2v1 km.

15. Multiply both sides of the inequality by v2: d2 × v1 > (36 - 2v1) × v2 km.

16. Rearrange the inequality: d2 × v1 - 36v2 > -2v1 × v2 km.

17. Since the riders start at the same time, the total time traveled by the second rider is t2 + 6 hours. So, we have t2 + 6 = d2 / v2.

18. Substitute t2 + 6 = d2 / v2 into the inequality: d2 × v1 - 36v2 > -2v1 × (d2 / v2) km.

19. Simplify the inequality: d2 × v1 - 36v2 > -2v1 × d2 / v2 km.

20. Multiply both sides of the inequality by v2: d2 × v1 × v2 - 36v2² > -2v1 × d2 km.

21. Rearrange the inequality: d2 × v1 × v2 + 2v1 × d2 > 36v2² km.

Now, we have two equations:

- Equation 1: d = d2 × (v1 + v2) / v2 + (2v1 + 6v2) - Equation 2: d2 × v1 × v2 + 2v1 × d2 > 36v2²

We can solve these equations to find the distance between the villages.

Calculation

Let's calculate the distance between the villages using the given information:

1. Equation 1: d = d2 × (v1 + v2) / v2 + (2v1 + 6v2) 2. Equation 2: d2 × v1 × v2 + 2v1 × d2 > 36v2²

Unfortunately, the given information does not provide values for the speeds of the riders or the distance traveled by the second rider. Without these values, we cannot calculate the distance between the villages.

Please provide the missing information, such as the speeds of the riders or the distance traveled by the second rider, so we can solve the problem accurately.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос