Вопрос задан 26.07.2018 в 04:43. Предмет Математика. Спрашивает Мищук Никита.

Трамвай шёл до остановки 4 мин со скоростью 68 км/ч. После этого ему осталось проехать вдвое

меньший путь, на который он потратил 2 ч. С какой скоростью ехал трамвай после остановки?( ПЛИЗ ОЧЕНЬ НАДО)) )
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Тамбовцев Глеб.
Вдвое меньший путь 34 км/час
после остановки v=s/t = 34/2=17км/час
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Calculation of Tram Speed After the Stop

To determine the speed of the tram after the stop, we can use the information provided. Let's break down the given information step by step:

1. The tram traveled to the stop for 4 minutes at a speed of 68 km/h. 2. After that, it had to cover a distance that was half as long as the previous one. 3. The time taken to cover this shorter distance was 2 hours.

To find the speed of the tram after the stop, we can use the formula:

Speed = Distance / Time

Let's calculate the distance and time for the second part of the journey:

1. The time taken to cover the shorter distance was 2 hours. 2. Since the tram traveled at a constant speed, we can use the formula: Distance = Speed × Time.

Let's calculate the distance covered in the second part of the journey:

Distance = Speed × Time

Distance = Speed × 2 hours

Now, we know that the distance covered in the second part of the journey was half the distance covered in the first part. Therefore, we can write:

Distance (second part) = 0.5 × Distance (first part)

Substituting the value of Distance (first part) from the previous calculation:

Distance (second part) = 0.5 × (68 km/h × 4 minutes)

To calculate the distance in kilometers, we need to convert the time from minutes to hours:

Distance (second part) = 0.5 × (68 km/h × (4 minutes / 60 minutes))

Simplifying the calculation:

Distance (second part) = 0.5 × (68 km/h × 0.067 hours)

Distance (second part) = 0.5 × 4.556 km

Distance (second part) = 2.278 km

Now that we have the distance covered in the second part of the journey, we can calculate the speed of the tram after the stop:

Speed = Distance (second part) / Time (second part)

Speed = 2.278 km / 2 hours

Calculating the speed:

Speed = 1.139 km/h

Therefore, the tram was traveling at a speed of 1.139 km/h after the stop.

Please note that the given information does not specify the units for time (minutes or hours) consistently. To ensure accuracy, I have made assumptions and performed the calculations accordingly.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос